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Abstract— Intracoronary optical coherence tomography
(OCT) is a new invasive imaging system which produces high-
resolution images of coronary arteries. Preliminary data sug-
gests that the atherosclerotic disease can be detected from the
intracoronary OCT images. However, manual assessment of the
intracoronary OCT images is time-consuming and subjective.
In this work, we present an automatic atherosclerotic disease
detection system on intracoronary OCT images. In the system,
a preprocessing scheme is first applied to remove speckle
noise and artifacts caused by catheter. Intensity, Histograms of
Oriented Gradients (HOG), and Local Binary Patterns (LBP)
are then extracted to represent the OCT image. Finally a linear
SVM classifier is employed to detect the unhealthy subject.
Four-fold cross-validation process is conducted to evaluate the
proposed system; and a dataset with 200 images from healthy
subjects and 200 images from unhealthy subjects is built to
evaluate the system. The mean accuracy is 0.90 and standard
deviation is 0.0427, which indicates that the proposed system
is accurate and stable.

I. INTRODUCTION

Coronary artery disease, also known as atherosclerotic
heart disease, is the most common type of heart disease
and cause of heart attacks. The disease is caused by plaque
building up along the inner walls of the arteries of the heart,
which narrows the arteries and reduces blood flow to the
heart. Fig. 1 shows the timeline of atherosclerosis. With the
progress of atherosclerosis, the stages are normal, patholog-
ical intimal thickening (PIT), stable plaque, atherosclerotic
plaque, and rupture. There is growing interest in the possibil-
ity that identification and treatment of vulnerable plaques and
vulnerable patients can enhance the progress made against
coronary artery diseases.
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Fig. 1. Atherosclerosis timeline.
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Fig. 2. Some OCT images in our dataset. (a) and (b) are images from
healthy subjects. (c) shows image from subject with atherosclerotic plaque,
and (d) shows image from subject with ruptured plaque. Both (c) and (d)
are images from unhealthy subjects.

Recently, intracoronary Optical Coherence Tomography
(OCT) [1][2] has emerged as one of the most promising intra-
coronary diagnostic tools with a resolution 15 um compared
with 150 um of intravascular ultrasound system (IVUS),
allowing a level of detail never reached before. The OCT
acquisition has already been proved to be safe, effective,
and highly reproducible [1]. Previous study suggests that
OCT could help to characterize the appearance of vulnerable
plaques [2]. However, manual assessment of the intracoro-
nary OCT images is time-consuming and subjective, thus
it is necessary to build an automatic vulnerable plaques
characterization system. Instead of characterizing the appear-
ance of vulnerable plaques, we propose a preliminary system
which classifies unhealthy subjects from healthy subjects in
intracoronary OCT images.

Most existing automatic OCT systems focused on vessel
lumen segmentation or stent strut detection problems. Tsantis
et al. [3] presented an automatic vessel lumen segmentation
method based on Markov Random Field (MRF) model.
Some researchers focused on other problems such as cal-
cified plaque detection. Athanasious et al. [4] proposed an
automatic method for detecting calcified plaque in OCT
images. The proposed method was fully automated but only
calcified plaque region was detected. Athanasious et al. [5]
also introduced a semi-automated plaque characterization
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Fig. 3. Framework of our proposed system. The detection system includes a preprocessing step to remove noise and artifacts; a feature extraction step to
extract representative features; and a detection step to decide whether the input image is from healthy or unhealthy subject by utilizing the model trained in
the training process. Similarly, training process includes a preprocessing step, a feature extraction step, and a step to train linear SVM model. The detection
process and training process have the same preprocessing and feature extraction procedure.

method in optical coherence tomography images. The plaque
area (Region of Interest) was selected manually by users
and the plaques were classified to four plaque types. The
overall classification accuracy was 80.41%. However, this
plaque characterization method was semi-automated since
the plaque area was selected by users manually; and it
classified pixels instead of the entire images.

In this work, we propose an automatic atherosclerotic heart
disease detection system which accurately classifies image to
healthy and unhealthy subjects by utilizing appearance fea-
tures. The proposed system includes three steps: preprocess-
ing, feature extraction, and detection (classification) using
SVM model. The SVM model is built by the training process.
In this process, the training images are processed using pre-
processing scheme, feature extraction scheme, and a linear
SVM model is built for diseased subject detection. Four-
fold cross-validation is conducted to evaluate the system. A
dataset with 400 annotated OCT images (200 images from
healthy subjects and 200 images from unhealthy subjects) is
built for the evaluation process. Fig. 2 shows some images in
the dataset. Here healthy subject means patient with normal
heart and blood vessel (Normal in Fig. 1), unhealthy subject
means patient with non-normal heart and blood vessels (PIT,
stable plaque, atherosclerotic plaque, and ruptured plaque in
Fig. 1). Evaluation results show that the proposed system is
accurate and stable.

II. METHODOLOGY

This section introduces technical details of the three main
steps in our system: preprocessing to remove noise and
artifacts, feature extraction to represent the OCT images, and
disease detection to decide whether the input unknown OCT
image is from healthy or unhealthy subject. Fig. 3 shows
our framework. Both detection and training process have the
same preprocessing and feature extraction scheme.

A. Preprocessing

We apply the following procedure to remove noise and
artifacts of the input OCT images.

• Remove the speckle noise using detail preserving
anisotropic diffusion (DPAD) method [6].

• Convert the image to polar coordinates. One may notice
that the catheter pixels are transferred from circle to line
after the transformation thus can be removed easily by
deleting the top N rows of the polar coordinates image.
Noted that all the input OCT images are square images,
here N is set to be 0.125 ∗W/2 empirically. W is the
width of the input OCT image.

• Remove other artifacts by deleting the black sector
which caused by occlusion. The occluded region is
shown in Fig. 4. The area within the red lines (acute
angle) is the black sector area. To remove it, we slide
a box over the polar image from left to right and
calculate the mean intensity within the box region. The
place where the smallest mean intensity value appears
is sector location. The height of the box is the height
of the denoised image and the width is set to be 30
empirically. Fig. 5 shows the details.

Fig. 4 shows some intermediate results. Here, (a) is the
original input image; (b) is the image after DPAD; (c) shows
the image after polar transformation. After the transforma-
tion, the red region is transformed from sector to rectangle.
We can get (d) by removing the top N rows of (c). The
top N rows show the catheter. We remove other artifacts by
deleting the occluded region and finally get (e).

B. Feature Extraction

As shown in Fig. 2, the images from healthy subjects
and unhealthy subjects looks quite different in intensity and
texture. In this paper we extract intensity feature, Histograms
of Oriented Gradients (HOG) [7] and Local Binary Patterns
(LBP) [8] bag-of-words (BOW) [9] features to represent
the OCT images. HOG captures the edge information, and
LBP operator is texture descriptors. Fig. 6 shows the feature
extraction process.

• Intensity feature: We resize the image to 32 × 32 pixels
and use the intensity of the resized image as feature
directly. In order to reduce dimensionality, we apply
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Fig. 4. Preprocessing results. (a) Original image. (b) Remove speckle
noise using DPAD. (c) Convert the image to polar coordinates. (d) Remove
catheter pixels. (e) Remove other artifacts by deleting the occluded region.
Red lines show the occluded region.
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Fig. 5. Process to remove the occluded region. Slide the green box over
the image and compute the mean intensity value within the box. The area
with least mean intensity value (K-th box) is the detected area. The height
of the green box is image height, and the width is set to be 30 pixels.

principal component analysis (PCA) [10] and keep the
top 95% energy.

• LBP bag-of-words feature: We extract LBP feature and
represent each image using LBP bag-of-words (BOW).
Bag-of-words is to represent the image using the fre-
quency of the words. We select OCT images which
are not used in the evaluation experiment to construct
codebook (words) of BOW. The selected images are
called codebook images. We compute LBP feature of
each image, and use K-means clustering method [11]
to get the codebook centres. Here K is set to be 32

empirically.
• HOG bag-of-words feature: We extract HOG feature

and quantilizing it using HOG bag-of-words. The same
as LBP bag-of-words feature, we compute HOG feature
of each codebook image, and use K-means clustering
method to get the codebook centres. Here K is set to
be 32 empirically.
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Fig. 6. Feature extraction process. Given the image after preprocessing, we
first extract intensity, LBP and HOG feature. For intensity feature, we apply
PCA to reduce dimensionality. For LBP and HOG, bag-of-words feature,
which represented by the frequency of LBP and HOG words, is computed.
Codebooks are constructed using OCT images which are not involved in
the learning process.

C. Detection

Linear Support Vector Machine (SVM) [12] is employed
to classify the positive and negative samples. Here posi-
tive samples are OCT images from unhealthy subjects and
negative samples are OCT images from healthy subjects.
In this experiment, we use LIBLINEAR package [13] for
classification.

III. RESULTS

A. Dataset Construction

We use OCT images from 47 patients for the atheroscle-
rotic heart disease detection system evaluation. The data
were collected by Wakayama Medical University. The im-
ages were acquired using optical frequency domain imaging
(OFDI) equipment (TERUMO LUNAWAVE). This equip-
ment produces high quality frequency domain OCT images
at 158 frames per second.

In this experiment, we randomly select 400 frames from
the 47 volumes to test the proposed system. They are 200
images from healthy subjects (negative samples) and 200
images from unhealthy subjects (positive samples) which are
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TABLE I
MEAN ACCURACY OF THE FOUR-FOLD CROSS-VALIDATION. LBP AND

HOG ARE BAG-OF-WORDS FEATURES.

Mean Accuracy
Intensity 0.85

LBP 0.84
HOG 0.81

Intensity+LBP 0.89
Intensity+HOG 0.87

LBP+HOG 0.86
Intensity+LBP+HOG 0.90

annotated by experts. All images are resized to 256 × 256
pixels. We employ a four-fold cross-validation process to
evaluate the proposed scheme. The mean value and standard
deviation of the four-fold cross-validation are reported.

Fig. 2 shows some images in our dataset. Here (a) and
(b) are negative samples, (c) and (d) are positive samples.
Specifically, (c) shows image from subject with atheroscle-
rotic plaque, and (d) shows image from subject with ruptured
plaque.

B. Experimental Results

A four-fold cross-validation process is used to evaluate the
proposed system. The dataset is divided into four subsets
with equal size randomly. Noted that our dataset includes
200 positive samples and 200 negative samples, therefore
each subset includes 50 positive samples and 50 negative
samples. We run the experiment four times and get four
accuracy values. For each time, one subset is used as testing
set; the others are used as training sets. The mean accuracy
value and standard deviation of the four results are reported.

The mean accuracy value and standard deviation are
reported in Table I and Fig. 7. Here LBP and HOG are
bag-of-words features. We study the single feature (Intensity,
LBP, and HOG), as well as feature combinations (I+LBP,
I+HOG, LBP+HOG, and I+LBP+HOG). It can be seen
that, the accuracy values are higher than 0.80 for all kinds
of feature combinations. For single feature, intensity gives
the best performance. One possible reason is that intensity
keeps the global information better. LBP outperforms HOG,
because here texture difference is more important than edge
difference. For feature combination, Intensity+LBP+HOG
gives best performance, but Intensity + LBP result shows
comparable result as the three feature combination result.
The standard deviations of the studied features are very
small, which indicates that our system is stable.

IV. DISCUSSIONS AND CONCLUSIONS

In this work, an automatic atherosclerotic heart disease
detection system is proposed. The system classifies the
image from healthy and unhealthy subjects automatically by
utilizing texture features. A four-fold cross-validation process
is used to evaluate the system and mean accuracy of 0.90 is
reported. Different from previous work, our proposed system
is fully automated and detects diseased subjects on the image
level.
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Fig. 7. Four-fold cross-validation results. Blue bar shows mean accuracy
value, black bar shows standard deviation.

The proposed system could be extended for atherosclerotic
grading in future by utilizing lumen and plaque properties.
Therefore vessel lumen segmentation and plaque study would
be added to our system.

REFERENCES

[1] F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I.-K. Jang,
T. Akasaka, M. Costa, G. Guagliumi, E. Grube, et al., “Expert review
document on methodology, terminology, and clinical applications of
optical coherence tomography: physical principles, methodology of
image acquisition, and clinical application for assessment of coronary
arteries and atherosclerosis,” European heart journal, vol. 31, no. 4,
pp. 401–415, 2010.

[2] F. Prati, G. Guagliumi, G. S. Mintz, M. Costa, E. Regar, T. Akasaka,
P. Barlis, G. J. Tearney, I.-K. Jang, E. Arbustini, et al., “Expert review
document part 2: methodology, terminology and clinical applications
of optical coherence tomography for the assessment of interventional
procedures,” European heart journal, vol. 33, no. 20, pp. 2513–2520,
2012.

[3] S. Tsantis, G. C. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas,
and G. C. Nikiforidis, “Automatic vessel lumen segmentation and stent
strut detection in intravascular optical coherence tomography,” Medical
physics, vol. 39, no. 1, pp. 503–513, 2011.

[4] L. S. Athanasiou, C. V. Bourantas, G. A. Rigas, T. P. Exarchos,
A. I. Sakellarios, P. K. Siogkas, M. I. Papafaklis, K. K. Naka,
L. K. Michalis, F. Prati, et al., “Fully automated calcium detection
using optical coherence tomography,” in Engineering in Medicine and
Biology Society (EMBC), pp. 1430–1433, IEEE, 2013.

[5] L. Athanasiou, T. Exarchos, K. Naka, L. Michalis, F. Prati, and D. Fo-
tiadis, “Atherosclerotic plaque characterization in optical coherence
tomography images,” in Engineering in Medicine and Biology Society
(EMBC), pp. 4485–4488, IEEE, 2011.

[6] S. Aja-Fernández and C. Alberola-López, “On the estimation of the
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