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Abstract— Landmark points in retinal images can be used to
create a graph representation to understand and to diagnose
not only different pathologies of the eye, but also a variety of
more general diseases. Aim of this paper is the description of a
non-supervised methodology to distinguish between bifurcations
and crossings of the retinal vessels, which can be used in differ-
entiating between arteries and veins. A thinned representation
of the binarized image, is used to identify pixels with three or
more neighbors. Junction points are classified into bifurcations
or crossovers according to their geometrical and topological
properties. The proposed approach is successfully compared
with the state-of-the-art methods with the benchmarks DRIVE
and STARE. The recall, precision and F-score average detection
values are 91.5%, 88.8% and 89.8% respectively.

I. INTRODUCTION

Retinal image analysis is particularly useful because it

is a non-invasive repeatable diagnostic practice to highlight

both pathologies of the eye and other diseases (e.g. diabetic

retinopathy and hypertension) which modify the caliper of

arteries or lead to new vessels and branches [1]. Since

the definition of a standard and automatic way to quantify

morphometric features of the retinal vessels is desirable, a

number of academics worked on retinal image segmentation.

Self-organizing feature maps [2] have been adopted to model

implicit cost functions for the junction geometry, and the

network connectivity is identified by resolving the configu-

ration of local sets of segment ends. A two-steps approach

is defined in [3]: the former applies imaging techniques

(mainly filters and morphologic operations) to obtain the base

structure for vessels detection; the latter classifies crossover

or bifurcation by analyzing the feature point’s environment.

Recently, a local operator, applied to the centerline of the

already thinned segmentation, was presented in [1].

In the last decade two main techniques were designed to

locate the vascular landmarks, based on geometrical-features

(as in our approach) which require some kind of image ma-

nipulation or are based on models which cannot be general-

ized easily. For example, a training phase is used to configure

a bank of Gabor filters to identify the landmark points, but

not to distinguish between bifurcations and crossovers [4].

The Kalman filter is applied depending on the continuities

in curvature, width and intensity changes at the bifurcation

and the crossing points to identify the vascular tree and a

minimum-cost matching algorithm resolves eventual tracing
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errors [5]. A hybrid approach detected the bifurcation and

intersection points in the fundus images using a window of

5×5 pixels [6]. An automatic approach to classify arteries

and veins was proposed in [7]: a graph representation of their

centerlines, extracted from the segmented image, is used in

order to classify the landmarks.

We already developed methodologies to automatically

segment retinal images by using AdaBoost [8] and Fuzzy

C-Means clustering [9]. The method proposed here intro-

duces a new technique which uses the graph representation of

the segmented images and further features round the junction

points to achieve a better reliable classification performance.

II. MATERIAL

The forty photographs which constitute the DRIVE dataset

were obtained in occasion of a diabetic retinopathy screening

program in The Netherlands. Each image has 565× 584
pixels and is stored with 8 bits per channel of the RGB color

space. The set is divided into training and test subsets with

20 images each, together with corresponding manual binary

segmentations [10]. Analogously, the STARE [11] dataset

contains 20 retinal images with 700× 605 pixels, 8 bits per

color channel with manual segmentations. We chose both

these datasets as a lot of previous and current works are

using them [1], [4], thus a reliable comparison between our

method and those by other researchers can be carried out.

III. METHODOLOGY

The methodology of the study is divided into two phases:

preprocessing and classification. The binary segmented im-

age is analyzed to specify junctions, widths and directions.

Each junction is therefore categorized as a bifurcation or a

crossover, according to its features.

A. Preprocessing phase

A binary segmentation, is the starting point for the prepro-

cessing stage. Thinning of the segmented images [12], [13]

was adopted in this contribution instead of skeletonization,

owing to the fact that the thinned image presents smoother

segments and contains less spikes which may lead to a false

impression about branches and cusps.

The eventual presence of very small sets of black pixels in

the low resolution segmented images produces wrong edges

which are not in the original input image; we contemplate

this case by applying the following rules, in order:

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 150



• for weakly-connected two components with each less

than 200 black pixels, this connection is converted to a

strong one by introducing a black pixel (Fig. 1);

• in a weakly connected black pixel to a component with

more than 1000 black pixels, this pixel is labeled as

foreground (vessel);

• all strongly connected one or two black pixels compo-

nents must be assigned as foreground.

Fig. 1. Original (left) and enhanced (right) images with their thinnings.

The resulting thinned version represents a graph of the

vascular network [14], where each arc is connected at most

to two nodes and each node is connected at least to three arcs.

Let us define a vertex as a pixel connected at least to three

components; a bifurcation as a vertex connected to exactly

three components; a direct crossing as a vertex which has

four connected components. Wide segments crossing each

other usually share an edge in addition to four outer segments

(Fig. 2a). We called this type of crossing as a non-direct
crossing if the length of the common edge is less than 25

pixels. In order to distinguish between these two types of

crossings we consider the minimum rectangle that includes

the vertices, expanded by one pixel in all directions (Fig. 2):

Direction of the vessels. Various algorithms were described

to calculate the local slope of the vessels [1], [2], [7]. We

experimentally verified that the singular value decomposition
on the thinned representation returns appropriate results.

Width of the vessels. Instead of time consuming ap-

proaches [1], [15] and due to the low resolution of the images

in both datasets, approximated widths of the vessels are

sufficient: we count the pixels common to the segment and

the perpendicular line of each pixel of the centerline [16].

In the case of less than 7 pixels, a rotational technique is

employed [17]. Twelve straight lines each spaced 15 degrees

from the next one are positioned around the considered

centerline pixel: the minimum number of pixels common in

each line is considered as the width of the segment.

Fig. 2. Enlarged rectangles including vertices with thinned vessels: possible
non-direct crossing (a) and direct crossing together with bifurcation (b).

B. Classification phase
To confirm or reject each candidate crossing we consider

the features computed during the preprocessing phase.

Identification of direct crossings. A simple yet effective

Gestalt approach is applied: two continuing segments gener-

ally have nearly equal widths and opposite directions.

• Width restrictions.
Given two pairs of opposite segments for a putative

direct crossing (Fig. 3a), let us indicate by w1, w3 and

w2, w4 their widths. Both these conditions, empirically

determined, must hold:{
min

{
min {w1,w3}
max {w1,w3} ,

min {w2,w4}
max {w2,w4}

}
< 0.15

max{|w1 − w3|, |w2 − w4|} < 6.2

• Direction restrictions.
Without loss of generality, let us consider α1 ≤ α2,

β1 ≤ β2 and α1 + α2 ≤ β1 + β2. Both angular

conditions, empirically determined, must hold:{
0 ≤ α1 ≤ α2 ≤ 173◦

35◦ ≤ β1 ≤ β2 ≤ 180◦

Identification of non-direct crossings. All candidate non-

direct crossings are sorted in ascending order with respect to

the length of their edges. Starting from the shortest edge, our

procedure tests the following criteria, which are analogous

to the cases described for direct crossings (Fig. 3b).

• Width restrictions.{
min

{
min {w1,w3}
max {w1,w3} ,

min {w2,w4}
max {w2,w4}

}
< 0.25

max{|w1 − w3|, |w2 − w4|} < 3.0

• Direction restrictions.⎧⎪⎪⎨
⎪⎪⎩

0≤α1≤α2≤166◦

α1+α2≤260◦

α2−α1≤135◦

β2−β1≤113◦

Fig. 3. Example of direct (a) and non-direct crossings (b).

IV. RESULTS AND CONCLUSIONS

To verify the effectiveness of our methodology, we com-

pared its results against the ground truth manually provided

by an expert ophthalmologist, in terms of true positives

(TP ), false positives (FP ) and false negatives (FN ). More-

over, the F-score was used to evaluate quantitatively the

overall accuracy: F = 2×RE×PR
RE+PR . This measure corresponds

to the harmonic mean of the values precision PR= TP
TP+FP

and recall RE= TP
TP+FN , which reflect respectively the rate

of true positive to all positive results and the ability of the
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algorithm to detect the landmarks. Correctness (CO) was

defined as the average of precision and recall.

The proposed unsupervised approach was fine-tuned on

the training images and validated on the test images of both

DRIVE and STARE datasets, using their manual segmenta-

tion to identify the structural components of the vascular tree

outside the optic disk which is considered unreliable [7] and

can be located by using the Harris detector [18], [19]. We

want to highlight that our method took into consideration all

vessels without excluding the smallest ones. Table I reports

detailed results for each image (ID), including the number

of landmark points obtained by the experts (GT) and by the

proposed method in addition to the considered metrics.

Fig. 4 shows that most classifications exhibit a value of

at least 80% for PR and RE measurements. We observed a

difference in the classification ability among images which

show actual pathologies and the quality of their respective

segmentations. This difference can be explained by consid-

ering the unusual vessel structures. We compared our results

with state-of-the-art works, showing better overall recall and

precision for both bifurcations and crossings (Fig. 5). The

average recall value for bifurcations and crossings detection

in the DRIVE and STARE datasets is 91.5%, the average

precision value is 88.8%, while the overall bifurcation and

crossing F-score values are 90.9% and 88.8% respectively.

Landmark points can be used to control the evolution of

diseases and the effectiveness of treatments, after register-

ing photographs acquired at different times [14]. Accurate

registration algorithms usually require uniformly distributed

points. We plan to include descriptors [20] to locate addi-

tional points not necessarily related to the structure of the

vessels on the retina. We will investigate also the application

of consolidated techniques [21], [22] to enhance the images

(e.g. noise reduction and normalization of brightness and sat-

uration). Further experiments should consider high resolution

photographs [23] to lessen any artifact due to vessel with

calibers comparable to the size of the pixels themselves.
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Fig. 4. Precision vs recall for the DRIVE (blue) and STARE (red) datasets.
Bifurcations and crossings are represented by triangles and circles.

TABLE I

BIFURCATIONS AND CROSSINGS FOR DRIVE AND STARE DATASETS.

THE HIGHLIGHTED IMAGE IS SHOWN IN FIG. 6.

Bifurcations

DRIVE dataset STARE dataset

ID G
T

M
et

h
o
d

T
P

F
N

F
P

F ID G
T

M
et

h
o
d

T
P

F
N

F
P

F

1 104 115 95 9 20 86.8 1 60 59 57 3 2 95.8
2 120 135 112 8 23 87.8 2 52 62 51 1 11 89.5
3 115 129 110 5 19 90.2 3 44 44 43 1 1 97.7
4 124 139 115 9 24 87.4 4 38 40 38 0 2 97.4
5 151 161 139 12 22 89.1 5 65 65 61 4 4 93.9
6 146 158 136 10 22 89.5 44 34 34 33 1 1 97.1
7 125 135 114 11 21 87.7 77 65 68 62 3 6 93.2
8 99 111 90 9 21 85.7 81 60 58 55 5 3 93.2
9 110 123 108 2 15 92.7 82 75 74 69 6 5 92.6

10 114 125 99 15 26 82.8 139 57 68 53 4 15 84.8
11 150 171 135 15 36 84.1 162 100 112 97 3 15 91.5
12 94 105 91 3 14 91.5 163 46 53 46 0 7 92.9
13 150 166 145 5 21 91.8 235 63 68 59 4 9 90.1
14 105 113 100 5 13 91.7 236 63 78 61 2 17 86.5
15 61 78 61 0 17 87.8 239 65 66 58 7 8 88.5
16 94 103 95 0 8 96.4 240 52 62 48 4 14 84.2
17 83 94 83 0 11 93.8 255 129 147 123 6 24 89.1
18 75 85 72 3 13 90.0 291 26 31 26 0 5 91.2
19 86 117 84 2 33 82.8 319 19 19 19 0 0 100.0
20 61 64 60 1 4 96.0 324 33 33 33 0 0 100.0

Crossings

DRIVE dataset STARE dataset

ID G
T

M
et

h
o
d

T
P

F
N

F
P

F ID G
T

M
et

h
o
d

T
P

F
N

F
P

F

1 26 25 20 6 5 78.4 1 13 15 12 1 3 85.7
2 27 28 22 5 6 80.0 2 17 13 13 4 0 86.7
3 30 30 28 2 2 93.3 3 10 9 9 1 0 94.7
4 21 20 17 4 3 82.9 4 7 7 7 0 0 100.0
5 27 28 23 4 5 83.6 5 16 19 15 1 4 85.7
6 38 39 32 6 7 83.1 44 12 12 11 1 1 91.7
7 24 25 22 2 3 89.8 77 19 17 17 2 0 94.4
8 21 19 16 5 3 80.0 81 25 26 23 2 3 90.2
9 23 24 21 2 3 89.4 82 21 23 19 2 4 86.4

10 26 29 22 4 7 80.0 139 21 17 15 6 2 79.0
11 39 38 31 8 7 80.5 162 41 36 34 7 2 88.3
12 26 29 25 1 4 90.9 163 21 17 17 4 0 89.5
13 26 27 22 4 5 83.0 235 22 21 19 3 2 88.4
14 22 23 19 3 4 84.4 236 27 23 21 6 2 84.0
15 15 14 14 1 0 96.5 239 28 29 27 1 2 94.7
16 35 33 32 3 1 94.1 240 18 16 15 3 1 88.2
17 20 18 18 2 0 94.7 255 29 27 25 4 2 89.3
18 25 20 19 6 1 84.4 291 7 6 6 1 0 92.3
19 24 25 23 1 2 93.9 319 9 9 9 0 0 100.0
20 25 24 24 1 0 98.0 324 7 7 7 0 0 100.0
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