
Optic disc and macula detection in fundus images by means of template
matching

Tzolkin Garduno-Alvarado1 M. Elena Martinez-Perez1 Maria A. Martinez-Castellanos 2

Luvia Rodriguez-Quinones2 Samantha M. Salinas-Longoria2

Abstract— Various methods for detecting optic disc and
macula in fundus images have been developed. Our aim is
to propose a fairly easy method for detecting both features
jointly. This is achieved by first correcting inhomogenous
luminosity using a polynomial approximation of the background
of the images. Secondly, the use of the cross-correlation in the
frequency domain between the images and a steerable template
which contains both structures. The 38 photographs used in this
work belong to a local database of patients suffering diabetic
retinopathy along its four severity stages. Our results showed
100% optic disc centers located within the OD area and 90%
macula centers located within the MC area.

I. INTRODUCTION

Diabetic Retinopathy (DR) is a chronic disease that affects
the eye. More specifically, it is the manifestation of diabetes
mellitus in the eye retina. It is catalogued by the World
Health Organization as one of the principal pathologies
causing blindness, [23]. Fundus images, Fig. 1, are used
as a tool for analyzing the progression of DR. With the
aid of fundus images, opththalmologists can trace and locate
lessions caused by DR. The amount and localization of these
lessions determines the severity of the disease, [5], thus a
reference point is needed to grade fundus images. Typically,
the reference system is a cartesian plane with the center of
the optic disc as origin, the abscissa being the line through
the center of the macula.

Fig. 1: Color fundus image

The OD is a retinal area mildly oval with the major axis in
the vertical position. Its mean area is 2.7 mm2 and its hori-
zontal radius of aproximately 1.8 mm. The variability of OD
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size is wide, its area can vary by a factor of 7, its horizontal
diameter by a factor of 2.5, [13]. OD color can be yellowish
orange with the temporal half a bit paler. The nasal half of the
OD has a less delineated edge, [13]. The main dificulty for
OD location achievement in a fundus image is the presence
of objects that share characteristics with the OD such as
intensity, color or variations in the reflection coefficient [22].
There is a wide variety of methods implemented for the
location and segmentation of the OD, [9], [22], [4], namely:
(1) searching of an area with the highest intensity variation
for the location of the OD, [18], [6], [17], (2) searching of an
area that resembles an OD template, [6], [15], (3) identifying
the OD by means of the selection of the largest region that
contains high intensity values, (4) estimating the OD edge
using the Hough transform, [14], [6], [17], (5) estimation of
the convergence of the retinal vasculature, [7], [6], [19], [24],
[15], [21], (6) Hausdorff based matching, [12], (7) principal
component analysis, [2], [1].

The MC is an oval area in the center of the retina. It
is located 3 to 4 mm (15 degrees) from the OD, slightly
downward, and between the major temporal vascular arcades.
Its shape is circular and its diameter is approximately the
same as the OD [13]. Under white light coloring, it appears
darker than the retina. Its coloration presents low contrast
when compared to the surrounding tissue, so the delimitation
of a border becomes complicated. Blood vessels are used
as reference for estimating the MC position, [19]. Location
of the MC is commonly done by detecting its center. It
is not usually segmented given its border is not clearly
defined. Some of the methods used for MC location are (1)
intensity variation and template matching, [18], [15], [17],
(2) principal component analysis and active shape models,
[14], (3) region growing, [6], (4) parabola adjustment to
principal arcade, [19], (5) kNN regresion classifier, [15], (6)
morphologial operators, [17], (7) arcade segmentation, [17],
[8], [20].

In this paper we propose the automatic detection of OD
and MC using a fairly simple method based on template
matching. Using the anatomical property that these two struc-
tures have, the search pattern characterizes both structures at
the same time. The algorithm also allows to discern between
right and left eye during the detection process. It works in
images OD centered as well as in MC centered, as far as
both structres are present in the image.
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II. MATERIALS

The set of images used in this paper consists of 38
images corresponding to either left or right eyes from patients
suffering from diabetic retinopathy, Fig. 1. All the images
were captured with a Carl Zeiss FF450 plus IR fundus
camera, the field of view angle used is 50 degrees and the
size of the images is 489×647 pixels. All the photographs
are saved in non compressed bmp format. The totality of the
images have had the OD and MC structures segmented by
two licensed ophthalmologists, such segmentations are used
as the gold standard for latter evaluation.

III. ALGORITHM

The fundus image database along with the manual seg-
mentation (MS) for each specialist is under construction.
Since we have 38 images so far and we require training and
testing sets, then the overall detection process performs a k-
fold cross validation on the set of images. The starting point
of a k-fold cross validation is dividing the set of images into
k roughly equal and mutually exclusive subsets. A loop of
k iterations is then executed, in each iteration k− 1 of the
subsets are used for training, while the remaining one is used
for validation. Each subset is validated in only one iteration,
whilst it is used k− 1 times for training, [11], [3]. On our
algorithm, each iteration is divided into three stages, say
training, determination of a region of interest and validation.
A brief description of these stages is given below.

A. Preprocessing

Before running the algorithm, a noise reduction median
filter is applied to the green band of the images, kernel size
being 4×4. Each image presents a non-uniform illumination
given the environmental conditions of the eye fundus imag-
ing as well as the intrinsic dynamics of the ligth path inside
the eye. A polynomial approximation of the background
illumination was made using a basis of discrete orthogonal
polynomials, [16], [10], the polynomials used for the present
approximation were of third degree. Next, the approximation
was subtracted from the original image. Fig. 2(a) shows the
result of this process.

(a) (b)

Fig. 2: (a) Result of the subtraction of the polynomial approximation
from the green band of the image. (b) Example of output template
from the training stage.

B. Training

The aim of training is to build a template. The training
step of each iteration of the k-fold cross validation loop of
our algorithm receives t images as input. The output is a
grayscale template of the region where the OD and MC
are located and two angles α and σ . Notice the template is
designed to contain both features and will be used without
making an explicit separation of them. The MS of the two
ophthalmologists are used as reference to devise the template.
Each image I j, j = 1,2, ..., t, t = 38, has a subimage extracted,
which contains the area where the MS of both features was
made, let Tj be that subimage. Tj is rotated −a j degrees,
where a j corresponds to the angle drawn by the horizontal
line and the one containing the OD and MC centroids in I j,
the interpolation used was bicubic. Angle α is assigned the
mean value of a j and σ its standard deviation. The images
obtained are cropped to the size of the smallest Tj. From the
latter set, an average image T is obtained, T is the output
template, Fig. 2(b).

C. Validation

During this stage, the process of template matching is
carried out, it returns a subimage of each image I j on the
validation set in question. For this purpose, six templates,
namely Tr, r = 1,2, ...,6, are created. These templates are
such that T1 = rot(T,α), where rot(T,α) is an α degree
rotation of T , T2 = rot(T,α +σ), T3 = rot(T,α −σ), T4 =
f lip(T1), where f lip(T1) is a flipping of T1 along the vertical
axis, T5 = f lip(T2) and T6 = f lip(T3).

Let j = j0 be fixed and such that I j0 belongs to the
validation set. The first step towards finding an area of
interest in I j0 is to perform a cross-correlation. The cross-
correlation between two functions f :R2→R and g :R2→R
is defined as,

( f ?g)(x,y) =
∞

∑
m=−∞

∞

∑
n=−∞

f (m,n)g∗(x+m,y+n), (1)

where ∗ denotes complex conjugation. Cross correlation
measures the similarity between f and g on each point.
Analogous to the convolution theorem, the cross-correlation
in Fourier domain satifies

F( f ?g) = [F∗( f )]F(g), (2)

where F denotes a discrete Fourier transform. Next, six cross
correlation matrices Mr, are computed:

Mr = F(I j0)◦F∗(Tr), (3)

where ◦ denotes an element-wise product of matrices. Fig.
3(a)(c) display the matrix for the cross correlation of a right
and left eye in Fig. 3(b)(d) with templates T2 and T4 respec-
tively. The maximum value mr of Mr is computed along with
its corresponding coordinates (xr,yr). Each coordinate point
(xr,yr) represents the center of a rectangular region the size
of Tr where the similarity of Tr and I j0 is the maximum. Thus
the coordinates corresponding to m = max(mr) are chosen
as the center of a rectangle R where the OD and MC lie.
Suppose r = r0 is such that m = mr0 .
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(a) (b)

(c) (d)

Fig. 3: (a) Cross correlation matrix for a right eye. (b) The yellow
dot is the MC center, M1, the cyan dot is the OD center, O1, and
the white dot is where m is found in the cross correlation. (c) Cross
correlation matrix for a left eye eye. (d) Same as (b) for left eye.

Once R has been found in I j0 , the OD and MC centroids
are marked using the average centroids of the OD and MC
relative to R. These points are then rotated −γ degrees with
the center point of R as the origin, where γ is such that T =
rot(Tr0 ,−γ) for r0 = 1,2,3 and T = f lip(rot(Tr0 ,−γ)) for
r0 = 4,5,6, let O j0 and M j0 be the resulting centroids of the
OD and MC after the rotation. Afterwards, a circle is drawn
with center O j0 and radius the average of the OD radius of
the training set. Similarly, a circle is drawn for the MC. Fig.
3(b)(d) show the results obtained for a right and left eye.
Finally, the orientation of the eye is determined according
to the template where the maximum cross-correlation was
found. If it comes from Tr, r = 1,2,3, then the eye in question
is right, otherwise it is left.

IV. EVALUATION

The evaluation of the algorithm is a process with which
the optimal k for the fold is chosen. Let O1

j and M1
j

be the centroids of the OD and MC MS from the first
specialist and O2

j and M2
j the respective centroids for the

second one and let Pi(k), i = 1, ...,4, be the averages of
{d(O j,O1

j)}, {d(O j,O2
j)}, {d(M j,M1

j )} and {d(M j,M2
j )}

respectively, where d is the euclidean distance measured in
pixels, j = 1, ..., t and O j and M j are the results of a k-fold
cross-validation. In Figure 4(a) P1(k) and P2(k) are depicted
for each k = 2, ...,19 as blue and red lines with diamonds,
P3(k) and P4(k) as blue and red lines with circles. Notice
that P1 and P2 are almost entirely overlapped, this is due to
the low variation between specialists.

To calculate the total error E(k), i.e. the appointed error
for each k, the average of {Pi(k)}, i = 1, ...,4, is estimated,
Fig. 4(a) illustrates E as a magenta line with squares. Thus
the value k for which E holds the minimum value is optimal
for the fold. In this case, k = 3 is such value.

Once the optimal value k = 3 has been found, the al-
gorithm was run over all the images and an estimation of
the error for each image was made. In Fig. 4(b) a plot of
d(O j,O1

j) and d(O j,O2
j) for k = 3 is shown. The magenta

line determines the OD radius, this means that the distance
of our result for OD was actually determined inside the OD
area. Analogously, Fig. 4(c) shows the results for the MC.
In this case, note that there are four images for which M j
was found outside the MC MS area by one specialist.
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Fig. 4: (a) P1 is the blue line with diamonds, P2 is the red line
with diamonds, P3 is blue line with circles, P4 red line with
circles, E is the magenta line with squares. (b) {d(O j,O1

j)} in
blue and {d(O j,O2

j)} in red for k = 3. (c) {d(M j,M1
j )} in blue and

{d(M j,M2
j )} in red for k = 3.
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V. DISCUSSION

The method used for determining a region for the OD
and MC applied in this paper is rather simple and easy to
implement. Its goal has been achieved satisfactorily, nonethe-
less, an amelioration of the results could be made. One of
the questions raised after the execution and result analysis
is if the usage of discrete orthogonal polynomials of order
three yielded the best approximation of the background of
the image. Say fourth degree polynomials are used instead,
is there a way to determine the optimal polynomial degree
for the best backgound approximation? Another question in
hand is how to determine k to avoid overfitting. The size of
the image set used for this algorithm is small if compared
with the amount of clinical images taken daily at a hospital.
However small our set is, we think it is representative of
the typical lesions found in eye fundus. For example several
retinas showing photocoagulation marks have been included
in our set, Fig. 5, this kind of lesions can be misleading when
searching for the OD given the luminosity they present. Other
lesions that can lead to errors are hard and soft exudates,
their intrinsic coloration and brightness is very similar to
that of the OD. Several images with this kind of lesions were
included in our image set and neither was marked incorrectly.
The difference between the MS of both specialists was not
taken into consideration while evaluating. This difference is
noticeable from Fig. 4(c) where the distance from the MC
center result to the centroid of the MS of one specialist can
be rather short while the distance to the second specialist
may differ in up to 40 pixels, such difference represents 8%
of our images height. For future work we have thought of
performing an adjustment of the MC center by means of a
local search. Additionaly, we will perform a segmentation
of the OD and MC. Plus, we will increase our database
size to improve our statistics. Finally, we will test our
algorithm using some public datasets to make our method
more reliable.

Fig. 5: Example of an eye with photocoagulation marks. The results
of the algorithm on this image are shown.
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