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Abstract— Steady-state visual evoked potential (SSVEP) has 

become one of the most widely employed modalities in online 

brain computer interface (BCI) because of its high signal-to-

noise ratio. However, due to the limitations of brain physiology 

and the refresh rate of the display devices, the available 

stimulation frequencies that evoke strong SSVEPs are generally 

limited for practical applications. In this paper, we introduce a 

novel stimulation method using patterns of time-varying 

frequencies that can increase the number of visual stimuli with 

a fixed number of stimulation frequencies for use in multi-class 

SSVEP-based BCI systems. We then propose a probabilistic 

framework and investigate three approaches to detect different 

patterns of time-varying frequencies. The results confirmed that 

our proposed stimulation is a promising method for multi-class 

SSVEP-based BCI tasks. Our pattern detection approaches 

improved the detection performance significantly by extracting 

higher quality discriminative information from the input signal. 

I. INTRODUCTION 

Brain–computer interface (BCI) is a novel mode of 
communication in which the intention of the users is 
transmitted to the external world using only their brain 
signals [1]. While BCIs have been mostly employed to help 
users with reduced motor abilities, applications for wearable 
and portable BCIs are emerging in clinical, wellness, and 
entertainment domains [2, 3].  

Various types of tasks and paradigms have been used for 
the realization of electroencephalography (EEG) based BCI 
systems such as event-related P300 [4], mu rhythm [5], and 
steady-state visual evoked potential (SSVEP) [6]. SSVEP-
based BCI systems have advantages over the other 
paradigms in that they have a high signal-to-noise ratio, 
require relatively few electrodes in the occipital area, and 
generally do not need any training, compared to the 
requirements of other BCI systems [7]. 

SSVEP comprises a series of brain electrical responses 
elicited by repetitive visual stimuli flickering at a frequency 
ranging from 1Hz to 100Hz [8]. Conventionally, SSVEP-
based BCI systems utilize a single frequency to encode each 
selection. Although SSVEP can be elicited by a broad range 
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of frequencies, in practical BCI applications all available 
stimulation frequencies do not always evoke high SSVEP 
responses. Moreover, if the visual stimuli are displayed on a 
monitor screen the stimulus frequencies are limited by the 
refresh rate of the display devices. It has been shown that the 
highest gain of SSVEP is probably situated in the range of 
6–20 Hz [9]. The harmonic signal of the SSVEP also limits 
this frequency range [10].  

Considering the above limitations, in applications such as 
character spelling, the available frequencies for SSVEP-
based BCIs are not enough to be assigned to every character 
for a speller paradigm [11]. Therefore, it is crucial to design 
a practical SSVEP-based BCI to create more target stimuli 
with limited available frequencies. Some previous studies 
have employed the phase information to design the targets in 
the SSVEP-BCI and showed the effectiveness of their 
approach [12]. In another effort [13], each target was 
simultaneously modulated by two different frequencies, 
which generated more flickering targets by combining the 
frequencies. In [14], the authors used a simple visual 
stimulus by flickering two different frequencies sequentially. 
They generated four target stimuli with two available 
frequencies. Despite the worthwhile initiating efforts, the 
proposed approach is very simple with only two frequencies 
and four target stimuli. Our work in this paper can be 
considered as a probabilistic generalization of the effort in 
[14]. 

In this paper, we propose a generalized multiple 
frequency stimulation method using patterns of time-varying 
frequencies. Our proposed method can produce more visual 
stimuli with a smaller number of stimulation frequencies for 
multi-class SSVEP-based BCI systems. We then present a 
probabilistic framework to recognize different patterns of 
time-varying frequencies by formulating it based on the 
number of patterns, the number of time-slots in each pattern, 
and the number of frequencies. Finally, we introduce three 
approaches to detect different patterns. Our novel method for 
stimulation and detection shows promising results for multi-
class SSVEP-based BCI tasks. 

II. PROPOSED METHOD AND ARCHITECTURE 

A. Signal acquisition system 

Increased demands for applications of BCI have led to 
growing attention towards their low-power portable 
embedded design. We have previously designed and 
developed a dry-contact EEG data acquisition system [15] 
featuring low cost, low power, and wireless capabilities. For 
the experiments and data recording in this study, we used the 
above-mentioned system, which comprises a set of 16 active 
dry-contact electrodes, two low-noise EEG analog front end 
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using the Texas Instruments ADS1299, and a Bluetooth low 
energy (BLE) communication module implemented in 3x1.5 
inches in size as shown in Fig. 1. 

 

Figure 1.  The EEG signal acquisition system 

In our proposed SSVEP-based BCI system, eight dry 
electrodes are placed at O1, O2, PO3, PO4, PO7, PO8, Oz, 
and POz according to the international 10-20 system and all 
of them are referenced to the right mastoid. The EEG 
recording system transfers the collected EEG signals to a PC 
or mobile handset, where the entire signal processing 
procedure is performed, via Bluetooth. The sampling rate 
was 250 Hz, and the collected signals were filtered between 
0.5 and 30 Hz. 

 

Figure 2.  X is the multi-channel EEG signals. Yf is a set of reference 

signals with fi Hz stimulus frequency [18] 

B. Canonical correlation analysis (CCA) 

We aim to employ canonical correlation analysis (CCA) 

to extract and distinguish different patterns of time-varying 

frequencies. CCA is a multivariable statistical method used 

when there are two sets of data, which may have some 

underlying correlation [16]. The use of CCA for multi-

channel SSVEP detection was first proposed in [17]. Fig. 2 

demonstrates the use of CCA to detect brain responses to 

visual stimulations where there are K target stimuli, with the 

stimulus frequencies being f1, f2, ..., fK, respectively. X refers 

to the set of multi-channel EEG signals and Yf refers to the 

set of reference signals which have the same length as X. The 

set of reference signals Yf  is, 
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where H1 and H2 are the harmonics (H1 = 2, H2 = 3 in this 

study). The multi-channel EEG signals and each of the 

reference signals were used as an input of the CCA method. 

The output canonical correlation ρ can be used for frequency 

recognition. The winner frequency w is recognized as, 

i
Ki

ρw
..1=

maxarg=  (2) 

where ρi is the CCA coefficient obtained with the frequency 

of reference signals being f1, f2, . . . , fK. We explored the 

CCA coefficient space for a robust discrimination between 

the patterns of frequencies. 

C. Patterns of time-varying frequencies 

The main purpose was to design a novel SSVEP 

paradigm using time-varying frequency patterns, in which we 

can increase the number of target LEDs without increasing 

the number of frequencies. We investigated six patterns 

generated from four different frequencies. Each pattern 

consisted of four time-spans of two second each. We 

formulated the problem based on the number of time-slots, T, 

the number of frequencies, K, and the number of patterns, Γ. 

We selected six patterns, as shown in Fig. 3(a), ranging from 

fixed frequency patterns in all their T=4 time-slots, such as 

{10.5Hz, 10.5Hz, 10.5Hz, 10.5Hz} to patterns with different 

frequency in every slot, such as {6.25Hz, 9.09Hz, 7.41Hz, 

10.53Hz} to explore the impact of faster frequency changes. 
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Figure 3.  (a) Six selected patterns of time-varying frequencies, (b) a 

snapshot of the experimental setup and data acquisition 

Several experiments were conducted to investigate 

different time-spans and frequency jumps to find a feasible 

operating point. In this paper, we used LEDs to accurately 

generate the target patterns. We set up the experiment as 

shown in Fig. 3(b) where six LEDs generated the selected 

patterns of frequencies, simultaneously. In order to generate 

the patterns, a microcontroller timer was configured to 

generate 100 clock ticks in one second. The toggling of the 

various LEDs was performed after an integer amount of 

119



  

clock ticks by the master timer. For example, the frequency 

of 7.14Hz is achieved by toggling the LED every 14 clock 

ticks and 9.09Hz constitutes toggling every 11 clock ticks. 

D. Detection of the target patterns 

We investigated the use of CCA correlation coefficients 

as a confidence measure in order to detect the target 

frequency at each time-span of the patterns. The index of the 

winner frequency pattern pw, is calculated as below, given 

the EEG input signal X,  

( )XpPw i
i

|logmaxarg=
Γ..1=

   (3) 

where Γ=6 is the number of patterns, P(pi|X) is the posterior 

probability of the pattern pi, given the input signal, X. 

Assuming that the probabilities of the time-slots in a pattern 

are independent,  
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where T=4 is the number of time-slots, xt is the input signal 

at the time-slot t, and pit is the frequency of the pattern pi at 

the time-slot t. Note that that pit is a member of the target 

frequencies, pit∈{f1..fK}. We know that log P(pit | xt) = log 

P(xt | pit) + log P(pit) – log P(xt) where log P(xt) can be 

ignored as a constant and log P(pit), the log prior probability 

of the frequency at the slot t in pattern pi, is known. For 

instance, from Fig. 3(a), the probability P(p11 = 6.25Hz) = 

1/6
  

and P(p41 = 7.4Hz) = 1/3. In order to calculate P(xt | pit), 

we investigated three approaches: 1) Calculate the Hamming 

distance, 2) Calculate the summation of Normalized CCA 

coefficients, and 3) Train a log-likelihood ratio test for each 

of the target frequencies for different slots.  
 

Hamming distance: In the first approach, we calculated 

the Hamming distance between the patterns. Based on CCA 

decision rule in Eq. (2), the probabilities of the frequencies 

at time-slot t of the pattern w will be measured as follows: 
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where K is the number of target frequencies and ρjt is the 

CCA coefficient for the target frequency j at the time-slot t. 

 
Figure 4.  (a) Six selected patterns of time-varying frequencies, (b) A 

snapshot of the experimental setup and data acquisition 

Normalized CCA correlation coefficients: In the second 

approach, we introduced a soft measure as opposed to 

Hamming distance }1,0{∈ . In this way, we aimed to capture 

higher resolution of discriminative information to effectively 

distinguish different patterns. We employed the normalized 

CCA correlation coefficients as the probability,
 
P(xt | pit=fw).  
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Log-likelihood ratio test: The frequencies that elicit strong 

SSVEP responses are highly dependent upon the 

participants. Therefore, different individuals respond 

differently to a specific frequency due to the still unclear 

physiological mechanisms. Consequently, a strong response 

to a particular frequency in a time-slot can introduce a bias in 

the overall likelihood of a pattern. The third approach in this 

paper aims to alleviate this effect.  In this approach unlike 

the previous approaches, there were two phases: training and 

recognition. We trained a log-likelihood ratio (LLR) test for 

each of the target frequencies at each of the time-slots using 

a training data set. To do so, we collected 20 trials of 8 

seconds (i.e. the length of each pattern) while the subjects 

were looking at each of the six LEDs. Therefore, we 

generated a training set comprising 120 trials of EEG signal. 

Then, we trained the best threshold on the LLR value per 

each target frequency, w, as the positive class, ‘pos’, and the 

rest of the frequencies as the negative class, ‘neg’ (Fig. 4).  

∑
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The training was based on the minimum classification 

error (MCE) criterion using 10-fold cross validation (10-

CV). At the recognition phase, the test pattern X={xt | 

t=1..T} was passed through the time slots and its scores for 

each frequency are compared with the trained threshold, 
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where )(
= twfitp

xSc  is the degree to which the input signal 

correlates with the frequency w at the time-slot t of the 

pattern i. It was compared to the minimum error estimate of 

the one-versus-rest discriminant threshold, thwt, on LLRwt. 

The overall score for the pattern i given the input X is, 

∑
1=t
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     (9) 

The scores calculated in Eq. (9) are directly used in the 

decision rule instead of a posteriori probabilities in Eq. (3) 

without normalization as they reflect the contribution of each 

time-slot in the overall pattern detection. The index of the 

winner frequency pattern, pw, given the input X is, 
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III. RESULTS 

Five subjects participated in this study. Table 1 reports 

the results using our three proposed approaches to 

distinguish six selected patterns generated from four 

different frequencies shown in Fig. 3(a).  

The results in Table 1 shows that using the time varying 

patterns of frequencies, we are able to generate more target 

patterns with a fixed number of available frequencies. 

Comparing the results of the Hamming distance with the 

normalized CCA coefficients, it can be observed that the 

CCA coefficients significantly improved the detection 

performance by capturing higher resolution information in 

the CCA output space. Table 1 also demonstrates that LLR 

thresholds led to the best results. This approach, described in 

section 2.4.3, aims to relieve the subject dependencies as 

well as to incorporate context dependencies into the 

recognition process. Overall, employing the normalized 

coefficients and the trained LLR thresholds leads to 39% and 

53% relative improvements over the hamming distance. 

TABLE I.  THE FREQUENCY PATTERN RECOGNITION ACCURACIES (%) 

Subject 

Accuracy 

Hamming 
Normalized 

Coefficient  

LLR 

threshold 

Sbj1 73 84.7 88.3 

Sbj2 70.5 82.2 87.5 

Sbj3 65.6 78.7 84.2 

Sbj4 68.3 80.8 85.8 

Sbj5 66.2 78.2 82.6 

AVE 68.72 80.92 85.68 

STDEV ±3.07 ±2.67 ±2.33 
 

TABLE II.  THE AVERAGED CONFIDENCE OVER THE SUBJECTS FOR 

DIFFERENT PATTERNS OF FREQUENCIES 

 
p1 p2 p3 p4 p5 p6 

Confidence 0.76 0.69 0.63 0.59 0.57 0.61 

Accuracy (%) 87.55 84.75 85.03 86.31 84.27 86.17 

 

We also calculated the average confidence for each of the 
selected patterns to investigate if there was any pattern 
related advantages in this task. p1 and p2 are target patterns 
with fixed frequencies while the rest of the patterns 
demonstrate time-varying frequencies. We calculated the 
confidence for different patterns in terms of averaged 
normalized CCA coefficients over the subjects, which is the 
sum of the target CCA correlation coefficients versus the 
sum of all the coefficients on the 20 target trials over the 
subjects. Table 2 reports the confidence and the target 
detection accuracy using the LLR test. The results show that 
patterns with fixed frequencies yield slightly higher 
confidence over the time-varying patterns. However, the 
differences do not translate into the detection accuracy which 
confirms that our novel stimulation method and detection 
approaches are effective for unified target pattern detection. 

IV. CONCLUSION 

The available stimulation frequencies that evoke strong 
SSVEPs are generally limited due to the nature of brain and 
display refresh rate. In this paper, we proposed a novel 

stimulation method of using patterns of time-varying 
frequencies that produced more visual stimuli with limited 
number of stimulation frequencies  (6>4) for use in multi-
class SSVEP-based BCI systems. The results confirmed that 
our proposed stimulation is a promising method for multi-
class SSVEP-based BCI tasks. We also introduced a 
probabilistic framework and three approaches to recognize 
the patterns of time-varying frequencies. Our proposed 
approaches significantly improved the detection performance 
of the system by extracting higher quality discriminative 
information in the CCA space, subject dependent cues, and 
dependencies between the CCA scores. 
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