
  

  

Abstract— In disaster rescue, breathing motion detection is 
an important approach to searching survivors trapped under 
debris. Detection of breathing motion is realized by detecting 
the respiratory signal acquired by the sensing system. In this 
paper, modeling the regular respiratory signal is studied. Firstly, 
a preliminary model is built based on power of absolute value of 
cosine function. Then, this preliminary model is improved in 
terms of some practical considerations, such as the 
DC-component of the respiratory signal often is removed by 
signal processing, and a phase uncertainty occurs due to the 
data acquisition. Finally, an analytical harmonic-based random 
respiratory signal model is derived, which can be used as the 
signal model in the future research about breathing motion 
detection. 

I. INTRODUCTION 
Breathing is a normal movement of human body, which is 

required to sustain life. Based on the natural understanding of 
breathing phases, the breathing motion can be modeled using 
three regular breathing states, i.e., inhale (IN), exhale (EX), 
and end-of-exhale (EOE), and one irregular breathing state 
(IRR) [1]. 

In disaster rescue, detection of breathing motion is an 
important approach for the rescue team to finding survivors 
under debris [2-6]. In external beam radiotherapy, real-time 
tracking method based on prediction of breathing motion 
allows beam delivery under free breathing conditions [1, 7-9]. 
In these applications，the breathing motion yields a respiratory 
signal in the data acquired by the sensing system. Then, 
detection or prediction of breathing motion is realized by 
detecting or analyzing this respiratory signal. 

In this paper, we call the breathing motion without the IRR, 
regular breathing, and call the respiratory signal produced by 
the regular breathing, regular respiratory signal. Fig. 1 
presents some experimental data acquired by the UWB 
impulse radar sensor employed in [6], where a typical regular 
respiratory signal including three regular breathing phases is 
contained. 

In disaster rescue, the breathing detection system 
commonly detects a place in a short time, e.g., tens of seconds 
or a few minutes, to decide the existence of trapped survivors. 
Although in a long time period, the respiratory rate of a 
trapped person probably changes, it often keeps fixed 

Research is supported in part by the National Science Foundation of 
China (NO.61379136), Key Lab for Health Informatics of Chinese Academy 
of Science (NO.CXB201104220026A), and Basic Research Programs of 
Shenzhen (NO.JC201104220255A and NO.JC201005270258A). 

Xin Li (e-mail: stillbluelixin@gmail.com; xin.li@siat.ac.cn), Dengyu 
Qiao (e-mail: dy.qiao@siat.ac.cn), Ye Li* (e-mail: ye.li@siat.ac.cn), are 
with the Shenzhen Institutes of Advanced Technology, Chinese Academy of 
Sciences, Key Lab for Health Informatics of Chinese Academy of Science. 

approximately during the short detection period. Additionally, 
the unconscious breathing of a trapped person often is regular. 
Then, the acquired respiratory signal often is regular and 
nearly periodic. Therefore, a detector for the periodic regular 
respiratory signal is useful in disaster rescue. 

According to detection theory, the choice of a detector 
depends upon many considerations. Of primary concern is the 
selection of a good mathematical model for describing the data 
statistically [10]. Commonly, the data model consists of the 
signal model and the noise model. In previous works related to 
breathing motion detection [2, 4-6, 11], less efforts have been 
made for modeling the respiratory signal. In this paper, we aim 
to build up an analytical signal model for the periodic regular 
respiratory signal. 

This paper is organized as follows. In section II, the 
models adopted in previous works are reviewed, and a 
preliminary model is built up based on power of absolute 
value of cosine function. Then, this preliminary model is 
improved in the following two sections. In section III, the DC 
component is removed, and the signal power is introduced into 
the model as a parameter. In section IV, a random phase 
parameter is introduced, and the final model is obtained. In 
section V, the prior knowledge contained in the final model is 
analyzed. In section VI, an experimental result is presented. A 
conclusion is drawn in section VII. 

 

II. MODELING BASED ON TRIGONOMETRIC FUNCTION 

A. A review of the models adopted in previous works 
In this paper, we define the duty cycle of the regular 

breathing motion as follows, 

 𝐷 ≜ 𝐿𝐼𝑁+𝐿𝐸𝐸𝑋
𝐿𝐼𝑁+𝐿𝐸𝐸𝑋+𝐿𝐸𝐸𝑂𝐸𝐸

, (1) 

where 𝐷 denotes the duty cycle, and 𝐿𝐼𝑁, 𝐿𝐸𝐸𝑋, and 𝐿𝐸𝐸𝑂𝐸𝐸  are 
the time lengths of the IN phase, the EX phase, and the EOE 
phase, respectively. The regular breathing motions could have 
various duty cycles. For example, a person who just completes 
a 100m race should have a quite short EOE phase, leading to a 
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Fig. 1  An experimental regular respiratory signal 
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large duty cycle, while a sleeping person often has a long EOE 
phase, leading to a small duty cycle. 

Three models, listed in Table I, have been adopted in 
previous works, including the model based on cosine function 
(CM) [5, 8], the model based on absolute value of cosine 
function (ACM) [11], and the model based on even power of 
cosine function (EPCM) [6, 7, 9]. Fig 2, showing the results of 
using these models to fit the experimental data presented in 
Fig. 1, demonstrates that the EPCM obtains a better fit than the 
other two. 

For the EPCM, the duty cycle 1 depends on its parameter 
𝑚𝑚, and decreases with the increase of 𝑚𝑚, as shown in Fig. 3, 
where the graphs of the EPCM with 𝑚𝑚 = 1~5 are presented.  

A disadvantage of the EPCM is the possible significant 
deviation between the duty cycle, that the model can achieve, 
and the duty cycle of the actual respiratory signal. Fig. 3 
presents a case that a significant deviation occurs, where the 
respiratory signal is plotted by the red dotted line. 

B. Respiratory signal model based on power of absolute 
value of cosine function 

We establish a respiratory signal model based on power of 
absolute value of cosine function (PACM), as follows, 

𝑀𝑀𝐸𝐸𝐴𝐴𝐶𝐶
〈𝑓𝑓,𝑑𝑑𝐸𝐸𝐴𝐴𝐶𝐶 ,𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶,𝑛𝑛〉(𝑡𝑡) ≜ 𝑑𝑑𝐸𝐸𝐴𝐴𝐶𝐶 + 𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶|cos(𝜋𝜋𝜋𝜋𝑡𝑡)|𝑛𝑛, (2) 

where 𝑑𝑑𝐸𝐸𝐴𝐴𝐶𝐶  is a DC term, 𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶  reflects the amplitude of 
breathing, 𝜋𝜋 is the respiratory frequency, and 𝑛𝑛 is the power 
order.  

The PACM contains the EPCM as its subset, since 
𝑀𝑀𝐸𝐸𝐸𝐸𝐶𝐶

〈𝑓𝑓,𝑑𝑑𝐸𝐸𝐸𝐸𝐶𝐶 ,𝐴𝐴𝐸𝐸𝐸𝐸𝐶𝐶,𝑚𝑚〉 = 𝑀𝑀𝐸𝐸𝐴𝐴𝐶𝐶
〈𝑓𝑓,𝑑𝑑𝐸𝐸𝐴𝐴𝐶𝐶,𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶 ,𝑛𝑛〉, if 𝑛𝑛 = 2𝑚𝑚, 𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶 = 𝐴𝐴𝐸𝐸𝐸𝐸𝐶𝐶, 

and 𝑑𝑑𝐸𝐸𝐴𝐴𝐶𝐶 = 𝑑𝑑𝐸𝐸𝐸𝐸𝐶𝐶 . The graphs of the PACM for 𝑛𝑛 = 2~10 
are shown in Fig. 4.  

According to Fig. 3 and 4, we can see that compared with 
the EPCM, the PACM improves the disadvantage of the duty 
cycle deviation to some extent, due to the increase of the 
achievable duty cycles. 

 

III. HARMONIC-BASED MODEL DERIVED FROM THE PACM 
The PACM represented by (2) contains a non-zero DC 

component. However, in practical detection systems, the DC 
component of respiratory signal commonly will be removed. 
For example, in [2], the DC component of the respiratory 
signal is cancelled by the clutter suppression algorithm 
proposed in [12]. Therefore, a model, for which the DC 
component is eliminated, will better fit the practical 
respiratory signal. 

According to (17) (see appendix), we have 

|cos𝜋𝜋𝜋𝜋𝑡𝑡|𝑛𝑛 = �𝐴𝐴𝑒𝑣𝑒𝑛𝑛
〈𝑛𝑛〉 (0) + ∑ 𝐴𝐴𝑒𝑣𝑒𝑛𝑛

〈𝑛𝑛〉 (𝑞𝑞) cos(2𝑞𝑞𝜋𝜋𝜋𝜋𝑡𝑡)
𝑛
2
𝑞=1 𝑛𝑛 ∈ ℕ𝑒

∑ 𝐴𝐴𝑜𝑑𝑑𝑑𝑑
〈𝑛𝑛〉 (𝑞𝑞) cos(2𝑞𝑞𝜋𝜋𝜋𝜋𝑡𝑡)+∞

𝑞=0 𝑛𝑛 ∈ ℕ𝑜

,(3) 

where the definitions of the notations are given in appendix. 
Substituting (3) into (2), and removing the DC terms, we can 
get a new model with zero DC component, 

𝑀𝑀𝐸𝐸𝐴𝐴𝐶𝐶−𝐷𝐶𝐶
〈𝑓𝑓,𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶,𝑛𝑛〉(𝑡𝑡) ≜ �

�∑ 𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐴𝐴𝑒𝑣𝑒𝑛𝑛
〈𝑛𝑛〉 (𝑞𝑞) cos(2𝜋𝜋𝑞𝑞𝜋𝜋𝑡𝑡)

𝑛
2
𝑞=1 � 𝑛𝑛 ∈ ℕ𝑒

�∑ 𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐴𝐴𝑜𝑑𝑑𝑑𝑑
〈𝑛𝑛〉 (𝑞𝑞) cos(2𝜋𝜋𝑞𝑞𝜋𝜋𝑡𝑡)+∞

𝑞=1 � 𝑛𝑛 ∈ ℕ𝑜

. (4) 

The signal power of the respiratory signal represented by 
(4), 

 
Fig. 4  The graphs of the PACM for 𝑛𝑛 = 2~10. 

 

TABLE I  RESPIRATORY SIGNAL MODELS ADOPTED IN PREVIOUS WORKS 

Model name Mathematical expression* 

CM 𝑀𝑀𝐶𝐶
〈𝑓𝑓,𝑑𝑑𝐶𝐶,𝐴𝐴𝐶𝐶〉(𝑡𝑡) = 𝑑𝑑𝐶𝐶 + 𝐴𝐴𝐶𝐶 cos(2𝜋𝜋𝜋𝜋𝑡𝑡) 

ACM 𝑀𝑀𝐴𝐴𝐶𝐶
〈𝑓𝑓,𝑑𝑑𝐴𝐴𝐶𝐶,𝐴𝐴𝐴𝐴𝐶𝐶〉(𝑡𝑡) = 𝑑𝑑𝐴𝐴𝐶𝐶 − 𝐴𝐴𝐴𝐴𝐶𝐶|cos(𝜋𝜋𝜋𝜋𝑡𝑡)| 

EPCM 𝑀𝑀𝐸𝐸𝐸𝐸𝐶𝐶
〈𝑓𝑓,𝑑𝑑𝐸𝐸𝐸𝐸𝐶𝐶,𝐴𝐴𝐸𝐸𝐸𝐸𝐶𝐶,𝑚𝑚〉(𝑡𝑡) = 𝑑𝑑𝐸𝐸𝐸𝐸𝐶𝐶 + 𝐴𝐴𝐸𝐸𝐸𝐸𝐶𝐶(cos(𝜋𝜋𝜋𝜋𝑡𝑡))2𝑚𝑚 

* In the mathematical expressions, 𝑡𝑡 denotes the time variable, and the 
model parameters are given in the upper scripts of the symbols, which 
represent the models. Parameters 𝑑𝑑𝐶𝐶, 𝑑𝑑𝐴𝐴𝐶𝐶, and 𝑑𝑑𝐸𝐸𝐸𝐸𝐶𝐶 are DC terms, 𝐴𝐴𝐶𝐶 , 
𝐴𝐴𝐴𝐴𝐶𝐶 , and 𝐴𝐴𝐸𝐸𝐸𝐸𝐶𝐶  reflect the amplitudes of breathing, 𝜋𝜋 is the respiratory 
frequency, and parameter 𝑚𝑚 determines the power order of the EPCM. 
 
 

 
Fig. 2  The results of using models adopted in previous works to fit the 
experimental data presented in Fig. 1. 
 
 

 
Fig. 3  The graphs of the EPCM for 𝑚𝑚 = 1~5, and a respiratory signal 
painted by red dotted line. 
 
 

1 A qualitative analysis for the duty cycle is enough for us to convey the 
ideas within this paper. So a clear mathematical definition for the duty 
cycle of the model, which can be derived from (1), is not included in this 
paper. 
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𝑃 = �
1
2
∑ �𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐴𝐴𝑒𝑣𝑒𝑛𝑛

〈𝑛𝑛〉 (𝑞𝑞)�
2𝑛

2
𝑞=1 𝑛𝑛 ∈ ℕ𝑒

1
2
∑ �𝐴𝐴𝐸𝐸𝐴𝐴𝐶𝐶𝐴𝐴𝑜𝑑𝑑𝑑𝑑

〈𝑛𝑛〉 (𝑞𝑞)�
2

+∞
𝑞=1 𝑛𝑛 ∈ ℕ𝑜

. (5) 

If we introduce the signal power 𝑃  into the model as a 
parameter, then (4) can be rewritten as 

𝑀𝑀𝐸𝐸𝐴𝐴𝐶𝐶−𝐷𝐶𝐶
〈𝑓𝑓,𝐸𝐸,𝑛𝑛〉 (𝑡𝑡) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧
√𝑃

⎝

⎛∑ 𝐴𝐴𝑒𝑣𝑒𝑛
〈𝑛〉 (𝑞)

�1
2
∑ �𝐴𝐴𝑒𝑣𝑒𝑛

〈𝑛〉 (𝑞)�
2𝑛

2
𝑞=1

cos(2𝜋𝜋𝑞𝑞𝜋𝜋𝑡𝑡)
𝑛
2
𝑞=1

⎠

⎞ 𝑛𝑛 ∈ ℕ𝑒

√𝑃

⎝

⎛∑ 𝐴𝐴𝑜𝑑𝑑
〈𝑛〉 (𝑞)

�1
2
∑ �𝐴𝐴𝑜𝑑𝑑

〈𝑛〉 (𝑞)�
2

+∞
𝑞=1

cos(2𝜋𝜋𝑞𝑞𝜋𝜋𝑡𝑡)+∞
𝑞=1

⎠

⎞ 𝑛𝑛 ∈ ℕ𝑜

. (6) 

Define 

𝐻𝐻𝑎𝑎𝑎𝑎
〈𝑛𝑛〉(𝑞𝑞) ≜  

⎩
⎪
⎨

⎪
⎧ 0 𝑛𝑛 ∈ ℕ𝑒 𝑎𝑛𝑛𝑑𝑑 𝑞𝑞 > 𝑛𝑛

2

𝐴𝐴𝑒𝑣𝑒𝑛𝑛
〈𝑛𝑛〉 (𝑞𝑞) �1

2
∑ �𝐴𝐴𝑒𝑣𝑒𝑛𝑛

〈𝑛𝑛〉 (𝑣)�
2𝑛

2
𝑣=1� 𝑛𝑛 ∈ ℕ𝑒 𝑎𝑛𝑛𝑑𝑑 𝑞𝑞 ≤ 𝑛𝑛

2

𝐴𝐴𝑜𝑑𝑑𝑑𝑑
〈𝑛𝑛〉 (𝑞𝑞) �1

2
∑ �𝐴𝐴𝑜𝑑𝑑𝑑𝑑

〈𝑛𝑛〉 (𝑣)�
2

+∞
𝑣=1� 𝑛𝑛 ∈ ℕ𝑜

, (7) 

resulting that (6) can be rewritten as 

 𝑀𝑀𝐸𝐸𝐴𝐴𝐶𝐶−𝐷𝐶𝐶
〈𝑓𝑓,𝐸𝐸,𝐻𝑎𝑠

〈𝑛〉〉(𝑡𝑡) = √𝑃�∑ 𝐻𝐻𝑎𝑎𝑎𝑎
〈𝑛𝑛〉(𝑞𝑞) cos(2𝜋𝜋𝑞𝑞𝜋𝜋𝑡𝑡)+∞

𝑞=1 � 𝑛𝑛 ∈ ℕ, (8) 

where the parameter vector of the model becomes 〈𝜋𝜋,𝑃,𝐻𝐻𝑎𝑎𝑎𝑎
〈𝑛𝑛〉〉. 

IV. RANDOM RESPIRATORY SIGNAL MODEL 
In this section, we call the beginning of the EX phase, 

breathing peak (BP). For the model 𝑀𝑀𝐸𝐸𝐴𝐴𝐶𝐶−𝐷𝐶𝐶  represented by 
(8), the origin of time axis is located at a BP. Generally, an 
operator starts the data acquisition arbitrarily. We denotes the 
time interval, between the starting time of the data acquisition 
(ST) and the nearest BP before the ST, by 𝑡𝑡∆. If adopting the 
ST as the origin of time axis, which always is true in practical 
applications, then we get a new respiratory signal 

𝑀𝑀𝐻𝑅𝑀
〈𝑓𝑓,𝐸𝐸,𝐻𝑎𝑠

〈𝑛〉,𝑡∆〉(𝑡𝑡) ≜ 𝑀𝑀𝐸𝐸𝐴𝐴𝐶𝐶−𝐷𝐶𝐶
〈𝑓𝑓,𝐸𝐸,𝐻𝑎𝑠

〈𝑛〉〉(𝑡𝑡 − 𝑡𝑡∆), (9) 

where 𝑡𝑡∆ ∈ [0,𝑇𝑟), and 𝑇𝑟 = 1 𝜋𝜋⁄ , denoting the respiratory 
period. An example with 𝑡𝑡∆ = 0.5𝑇𝑟 is presented in Fig. 5. 

 
Commonly, it is acceptable to model 𝑡𝑡∆  as a random 

variable with uniform distribution in [0,𝑇𝑟) . If we define 
𝜑 = 2𝜋𝜋𝜋𝜋𝑡𝑡∆, then 𝜑 is uniformly distributed in [0,2𝜋𝜋). Using 
𝜑 instead of 𝑡𝑡∆, (9) can be rewritten as 

𝑀𝑀𝐻𝑅𝑀
〈𝜋𝜋,𝑃,𝐻𝐻𝑎𝑠

〈𝑛𝑛〉,𝜑〉(𝑡𝑡) = √𝑃�∑ 𝐻𝐻𝑎𝑠
〈𝑛𝑛〉(𝑞𝑞) cos(2𝜋𝜋𝑞𝑞𝜋𝜋𝑡𝑡 − 𝑞𝑞𝜑)+∞

𝑞𝑞=1 �. (10) 

Finally, by a series of derivations, we get a model 
represented by (10), which is the final model proposed in this 
paper. We call this final model, harmonic-based random 
model of the regular respiratory signal (HRM). 

V. PRIOR KNOWLEDGE 
The HRM represents a periodic signal by a linear 

combination of its harmonics. Why do not we model the 
respiratory signal based on its harmonics at the beginning of 
the modeling? In fact, if we do so, then a respiratory signal 
model based on harmonics (HM) can be written as follows, 

𝑀𝑀𝐻𝑀
〈𝑓𝑓,𝐸𝐸,𝐴𝐴′𝑞,𝛽′𝑞,𝜑〉(𝑡𝑡) ≜ √𝑃�∑ 𝐴𝐴′𝑞 cos�2𝜋𝜋𝑞𝑞𝜋𝜋𝑡𝑡 + 𝛽′𝑞 − 𝑞𝑞𝜑�+∞

𝑞=1 �, (11) 

where 𝜋𝜋  denotes the respiratory frequency, 𝑃  denotes the 
signal power, 𝐴𝐴′𝑞  denotes the amplitude of the 𝑞𝑞𝑡𝑡ℎ  order 
harmonic of the respiratory signal with unit power, 𝛽′𝑞  
denotes the phase of the 𝑞𝑞𝑡𝑡ℎ order harmonic, and 𝜑 denotes 
the random phase parameter with uniform distribution in 
[0,2𝜋𝜋).  

Although the HM represented by (11) has a mathematical 
expression similar to the HRM represented by (10), the former 
contains less prior knowledge than the latter. 

The HM provides no prior information about its harmonic 
amplitudes. But for the HRM, the harmonic amplitudes are 
determined by the signal power 𝑃 and the function 𝐻𝐻𝑎𝑎𝑎𝑎

〈𝑛𝑛〉(𝑞𝑞). 
According to Fig. 6, which shows the graphs of 𝐻𝐻𝑎𝑎𝑎𝑎

〈𝑛𝑛〉(𝑞𝑞) with 
different 𝑛𝑛, the respiratory signal has a dominant fundamental 
harmonic, and with the decrease of the duty cycle, i.e., the 
increase of 𝑛𝑛 , the amplitudes of the 2nd and 3rd order 
harmonics increase gradually. Furthermore, according to the 
HRM, it is clear that 𝛽′𝑞 , the unknown phase parameter in the 
HM, equals zero. 

The HRM contains additional prior knowledge. According 
to detection theory, more prior knowledge generally means a 
more specific detector with a better detection performance. 

 

VI. EXPERIMENTAL RESULT 
The result of using the HRM to fit the experimental data 

presented in Fig. 1 is shown in Fig. 7. Firstly, the value of the 
respiratory frequency 𝜋𝜋  is obtained from the dominant 
frequency in the periodogram of the experimental data. Then, 
other parameters of the model, i.e., 𝑃, 𝑛𝑛 and 𝜑, are determined 
by the least square approach, which is realized based on a grid 
search method. The fitting result is shown in Fig. 7, where 
𝜋𝜋 = 0.233Hz , 𝑃 = 0.6097 , 𝜑 = 0.922𝜋𝜋 , and 𝑛𝑛 = 7 . The 
mean squared error is 0.0370. 

 
Fig. 5  The relation between the HRM and the DC-removed PACM. 

 
Fig. 6  The graphs of 𝐻𝐻𝑎𝑎𝑎𝑎

〈𝑛𝑛〉(𝑞𝑞) for 𝑛𝑛 = 2~10 
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VII. CONCLUSION 
In this paper, modeling the regular respiratory signal has 

been studied. In previous works, the CM, the ACM and the 
EPCM were adopted. The CM and the ACM have poor 
performances due to the significant waveform differences 
from the experimental respiratory signal (see Fig. 2). The 
EPCM shows a good fitting, but it may suffer a duty cycle 
deviation (see Fig. 3). The PACM is proposed in this paper as 
a preliminary model, which has the EPCM as its subset and 
shows an improvement in the duty cycle deviation (see Fig. 4). 
The PACM is developed in terms of some considerations for 
the practical respiratory signal, such as having a zero DC 
component and suffering a phase uncertainty due to the data 
acquisition, resulting in the HRM. The HRM represents the 
respiratory signal by a linear combination of its harmonics, 
and has additional prior knowledge about the harmonic 
amplitudes and phases, which can be used as the signal model 
in the future research about breathing motion detection. 

APPENDIX 
In the following computation, ℕ denotes the set of natural 

numbers, ℕ𝑒 denotes the set of even natural numbers, and ℕ𝑜 
denotes the set of odd natural numbers. According to Euler’s 
formula, we have 

(cos 𝑥)𝑛𝑛 = �𝑒
𝑖𝑥

2
+ 𝑒−𝑖𝑥

2
�
𝑛𝑛

, (12) 

and using binomial theorem to expand the power �𝑒
𝑖𝑥

2
+

𝑒−𝑖𝑥

2
�
𝑛𝑛

, we can get 

(cos 𝑥)𝑛𝑛 =

⎩
⎪
⎨

⎪
⎧ 𝐶𝐶𝑛

𝑛
2

2𝑛
+ ∑ 𝐶𝐶𝑛

𝑛
2−𝑘

2𝑛−1
cos(2𝑘𝑥)

𝑛
2
𝑘=1 𝑛𝑛 ∈ ℕ𝑒

∑ 𝐶𝐶𝑛
𝑛+1
2 −𝑘

2𝑛−1
cos�(2𝑘 − 1)𝑥�

𝑛+1
2
𝑘=1 𝑛𝑛 ∈ ℕ𝑜

, (13) 

where 𝐶𝑛𝑛𝑘  denotes the binomial coefficient. Let s(𝑥)  be a 
2𝜋𝜋-periodic signal, and for 𝑥 ∈ [−𝜋𝜋,𝜋𝜋), 

s(𝑥) = �
1 𝑖𝜋𝜋 𝑥 ∈ �− 𝜋

2
, 𝜋
2
�

−1 𝑖𝜋𝜋 𝑥 ∈ �−𝜋𝜋,−𝜋
2
� ∪ �𝜋

2
,𝜋𝜋�

, (14) 

then by Fourier series theory, we can get  

s(𝑥) = ∑ 4(−1)𝑢−1

𝜋(2𝑢−1)
cos�(2𝑢 − 1)𝑥�+∞

𝑢=1 . (15) 

It is clear that 

 |cos 𝑥|𝑛𝑛 = �
(cos 𝑥)𝑛𝑛 𝑛𝑛 ∈ ℕ𝑒

s(𝑥)(cos 𝑥)𝑛𝑛 𝑛𝑛 ∈ ℕ𝑜
. (16) 

Substituting (13) and (15) into (16), we can get 

|cos𝑥|𝑛𝑛 = �𝐴𝐴𝑒𝑣𝑒𝑛𝑛
〈𝑛𝑛〉 (0) + ∑ 𝐴𝐴𝑒𝑣𝑒𝑛𝑛

〈𝑛𝑛〉 (𝑞𝑞) cos(2𝑞𝑞𝑥)
𝑛
2
𝑞=1 𝑛𝑛 ∈ ℕ𝑒

∑ 𝐴𝐴𝑜𝑑𝑑𝑑𝑑
〈𝑛𝑛〉 (𝑞𝑞) cos(2𝑞𝑞𝑥)+∞

𝑞=0 𝑛𝑛 ∈ ℕ𝑜

, (17) 

where 𝐴𝐴𝑒𝑣𝑒𝑛𝑛
〈𝑛𝑛〉 (0) = 𝐶𝐶𝑛

𝑛
2

2𝑛
, 𝐴𝐴𝑒𝑣𝑒𝑛𝑛

〈𝑛𝑛〉 (𝑞𝑞) = 𝐶𝐶𝑛
𝑛
2−𝑞

2𝑛−1
, 𝐴𝐴𝑜𝑑𝑑𝑑𝑑

〈𝑛𝑛〉 (𝑞𝑞) =

∑ (−1)𝑢−1𝐶𝐶𝑛
𝑛+1
2 −𝑘

2𝑛−2𝜋(2𝑢−1)(𝑘,𝑢)∈Q(𝑞,𝑛𝑛) , and the set Q(𝑞𝑞,𝑛𝑛) =

�(𝑘,𝑢) ∈ ℕ2� 1 ≤ 𝑘 ≤ 𝑛𝑛+1
2

, |𝑘 + 𝑢 − 1| = 𝑞𝑞 𝑜𝑟 |𝑘 − 𝑢| = 𝑞𝑞  �. 
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Fig. 7  The result of using the HRM to fit the experimental data presented 
in Fig. 1. 
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