
  

  

Abstract— An adaptive system for the processing of the 
electrocardiogram (ECG) for the classification of heartbeats 
into beat classes that seeks to minimize the required input from 
the user is presented. A first set of beat annotations is produced 
by the system by processing an incoming recording with a 
global-classifier. The beat annotations are then ranked by a 
confidence measure calculated from the posterior probabilities 
estimates associated with each beat classification. An expert 
then validates and if necessary corrects a fraction of the least 
confident beats of the recording. The system then adapts by 
first training a local-classifier using the newly annotated beats 
and combines this with the global-classifier to produce an 
adapted classification system. The adapted system is then used 
to update beat annotations. Our results show that we can 
achieve a significant boost in classification performance of the 
system by using a small number of beats for adaptation. 

I. INTRODUCTION 
The electrocardiogram (ECG) is a non-invasive test that 

can be used to detect arrhythmias. To successfully capture 
some arrhythmias up to a month of ECG activity may need to 
be recorded. A characteristic of many arrhythmias is that 
they appear as sequences of heartbeats with unusual timing 
or ECG waveshape. The rhythm of the ECG signal can be 
determined by knowing the classification of consecutive 
heartbeats in the signal [1] and an important step towards 
identifying an arrhythmia is the classification of heartbeats. 
Automated processing of the annotation of beat types is 
helpful to the clinician as it may save many hours of tedious 
work manually annotating the beat types of multiday ECG 
recordings. There are numerous publications on ECG beat 
classification e.g. [2-14]. The published approaches differ in 
three main respects 1) methods used for calculating 
discriminating features, 2) classifier model and 3) adaptive 
or fully automatic operation. 

Approaches considered for calculating discriminating 
features have been motivated by observations that aberrant 
heartbeats normally have unusual timing and/or unusual 
ECG waveshape. Authors considering unusual timing 
features have used RR-intervals [3,6,7,8,9,10,12,13,14] in 
the immediate vicinity of the heartbeat under analysis to 
capture this information. Authors have also considered 
intrabeat timing changes by looking at P, QRS and T wave 
interval information [3,6,10]. Waveshape has been 
characterized using a wide variety of methods. For example 
it has captured directly by sampling the ECG waveform 
 

*Research supported by Australian Research Council grant number 
FT110101098. 

P. de Chazal is with the Marcs Institute, University of Western Sydney, 
Australia (Phone: +61 2 4736 0447; fax: +61 2 4736 0833; e-mail: 
p.dechazal@uws.edu.au). 

[3,5,6,10,11] and indirectly with dimension reducing 
functions such as Hermite functions [2,7,10], wavelets 
[8,9,12,13,14] and other higher order statistical functions 
[5,10]. It is not obvious from the presented results that any 
method has a clear advantage over others. Llamedo also 
considered multilead ECG features inspired by 
vectorcardiographic [12,13] analysis. 

In order to improve performance of heartbeat 
classification systems, research attention has been directed to 
patient adaptive arrhythmia detection i.e. the classifier uses 
expert knowledge about a section of the recording under 
analysis to improve the detection rate on the rest of the 
recording. Llamedo [13] et al. reported classification 
performance improvement of at least 6.9% with an adapting 
system using a system that combined a linear discriminant 
based automatic system with a clustering system. Jiang et al. 
[7] used a blocked based neural network and adapted the 
network using the first five minutes of each record. Ince et 
al. [8] used a feedforward neural network also adapted using 
the first five minutes of data of each record. 

 Many of the adaptive systems published so far rely on a 
human expert labelling a contiguous series of heartbeats. 
While this is relatively easy to implement, it does not use the 
human expert’s knowledge in the most efficient manner. In 
this paper we offer a new approach to the problem of 
adaption by forcing the classifier to learn from beats that it 
has had the most difficulty in classifying. We assess 
difficulty by looking at the posterior probabilities of each 
classification determined from a global-classifier and 
choosing beats where there is a small difference between the 
probability of the chosen class and the other classes. The 
intuitive idea is that learning is best achieved by using 
learning from hard cases rather than easier cases. 

II. METHODS 

A. Data 
Data from the MIT-BIH arrhythmia database [15] was 

used in this study. The database contains 48 recordings each 
containing two ECG lead signals (denoted lead A and B). 
Following AAMI recommended practice [16,17] the four 
paced beat recordings were removed from the analysis. The 
data is band-pass filtered at 0.1-100Hz and sampled at 
360Hz. There are over 109,000 labeled ventricular beats 
from 15 different heart-beat types which were remapped to 
the five AAMI heart-beat classes [16]. Class N contained 
beats originating in the sinus node (normal and bundle 
branch block beat types), class S contained supraventricular 
ectopic beats (SVEB), class V contained ventricular ectopic 

An Adapting System for Heartbeat Classification  
Minimising User Input 

Philip de Chazal, Member, IEEE 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 82



  

beats (VEB), class F contained beats that result from fusing 
normal and VEBs, and class Q contained unknown beats 
including paced beats. 

B. Data Processing 
Figure 1 depicts our classification system. An incoming 

record is processed as follows. Initially, a global-classifier 
trained on a large dataset independent of the incoming record 
processes the recording to produce the initial set of beat 
annotations (in Fig. 1 this is achieved by switching off the 
adaptive inputs). A selection of annotated beats is then 
presented to an expert who, if necessary, corrects the 
annotations. The corrected annotations are then used to train 
a local-classifier. Adaptation is achieved by combining the 
outputs of the global-classifier and local-classifier to produce 
an adapted classification system. The adapted system is then 
used to update the annotations of the beats that have not been 
annotated by the expert. 

The pre-processing and processing stages are identical to 
configuration IX described in [4] and the reader is referred to 
this reference for details. The features used by our system are 
shown in Table 1. 

TABLE  I:  THE FEATURES CONSIDERED IN THIS STUDY.  
 

Features 
Pre-RR interval, Post-RR interval,  
Average RR-interval, Local avg. RR-interval. 
QRS duration (QRS offset -QRS onset) of leads A and B. 
T-wave duration (T-wave offset - QRS offset) of leads A and B. 
P wave flag for leads A and B. 
ECG morphology (10 samples) between QRS onset and  
QRS offset of leads A and B. 
ECG morphology (9 samples) between QRS offset and  
T-wave offset of leads A and B. 

 
The feature extraction phase calculates a vector of 

measurements (feature vector) from each heartbeat that are 
processed by the classifier stage. The classifier stage selects 
one of the required classes in response to the input feature 
vector. The classifier contains parameters that are set during 

the system development to optimise the classification 
performance. The parameters are determined from a 
combination of local and global training. A combiner then 
unites the decisions of the classifier-units from the two ECG 
signal to form the final decision of the system. 

C. Adaption  
Adaptation is achieved by incorporating a human 

expert’s knowledge of a section of the recording for a 
particular patient into the training of the local classifier with 
the objective of increasing the classification performance of 
the heartbeat labelling system on the rest of the recording. 
The benefit of adaptation systems is the increased 
classification performance. The downside is that the fully 
automatic operation of the system is lost as a human expert 
must manually check the annotations of a selection of sample 
beats of the recording under investigation. 

Our adaptation system is based on linear discriminants 
[18]. We have chosen this classifier as they return 
probabilistic outputs, training is achieved in one computation 
iteration and we have achieved good results with them 
previously for ECG heartbeat classification. Linear 
discriminant classifier parameters are determined with the 
training data using weighted maximum likelihood estimators 
as described in [18]. For a c class problem the classifier 
parameters (class means kμ  and common covariance Σ ) can 
be determined from the training data examples using 
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where the number of training examples in class k is Nk, 
the feature vector of the nth training example belonging to 
class k is denoted knx , and kΣ  is the class-conditional 
covariance matrix. 
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Figure 1: An Adaptive Heartbeat Classifier system. Note there is a parallel identical system processing ECG lead B. 
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Figure 2: VEB and SVEB accuracy of the adaptive system. “Selected” indicates that beats for training the local classifier have been chosen using 
posterior probability values of the global classifier. “Contiguous” indicates the beats have been chosen sequentially be beat number. 

The training data is used to determine the kμ ’s and Σ . A 
feature vector x is classified by calculating the estimated 
posterior probabilities, ( )|P k x  for the kth class using 
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The final classification of the system is the class with the 
highest posterior probability estimate. 

Classifier parameters are calculated separately for the 
local- and global-classifiers and then the parameters are 
merged to form the final adapted system parameters. In the 
following the modifier indicates data or parameters for the 
global-classifier, indicates local-classifier data or 
parameters, and   indicates adapted classifier parameters. 
The global training data is used to determine the kμ ’s and 

kΣ ’s for the global-classifier using (1) above. During 
development of the system global training is performed once 
on a large database and the global-classifier parameters are 
then fixed. The local data is used to determine the kμ ’s and 

kΣ ’s for the local-classifier using (1). The parameters of the 
local and global classifier are combined to form the adapted 
classifier as follows:  
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where  Kk is the class conditional weighting value and 
varies between 0 and 1 and is set using the training data. The 
total number of beats used in training of the local-classifier is 
given by N  .  

Our goal was to minimise N  by designing an adaptive 
classification system that selects the best heartbeats for 
review by the human expert. To select heartbeats to train the 
local-classifier we first ran the global-classifier over the 
record and used (4) to calculate the posterior probabilities of 
each class for each beat. We graded the confidence of the 

classifiers decision for the ith heartbeat by determining the 
ratio (Ri) of its highest posterior probability to sum of the 
other posterior probabilities. Using the fact that posterior 
probabilities sum to one for a heartbeat we get 
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Beats that have been classified with a high degree of 
confidence by the global classifier have a large value for Ri 
while beats classified with a low degree of confidence will 
have a low value of Ri. To select beats for adaptation training 
we ranked the Ri’s from lowest to highest value and then 
present the lowest ranked beats to the human expert for 
evaluation. By forcing the adaptive system to focus on the 
difficult cases, we expected the adaptive learning to be 
achieved with a smaller number of beats. 

D. Combining Classifiers 
To combine the outputs from processing lead A and lead 

B we averaged the posterior probability estimates calculated 
using equation (2) and then chose the class with the highest  
combined posterior probability. 

E. Performance Estimation 
Classifier training was achieved using data from 22 

recordings of the database (DS1 in [4]) and performance 
assessment was determined using the other 22 recordings 
(DS2 in [4]). Performance measures considered were the 
accuracy, sensitivity, positive predictivity and false positive 
ratio of the VEB and SVEB heart beat classes. Definitions 
for these measures may be found in [16] and procedures for 
calculating are given in [4]. We note that these calculation 
methods vary from standard definitions for accuracy, 
sensitivity, positive predictivity and false positive ratio. This 
is because the AAMI recommendations exclude unknown 
beats from true positive (TP) and false positive (FP) 
calculations for the SVEB and VEB measures and fusion 
beats are excluded from TP and FP calculations for VEB 
measures. This point is often overlooked by other 
researchers in the area. 
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III. RESULTS AND DISCUSSION 
We varied the number of beats used for adaption between 

10 and 500. Figure 2 shows the accuracy of classification 
system for SVEB and VEB detection using beats selected by 
global classifier posterior probabilities. For reference we 
have shown the accuracy of the system when contiguous 
beats are chosen.  

The results in fig. 2 demonstrate the performance benefit 
of selecting beats for local classifier training using global 
classifier probability estimates over sequential selection of 
beats. When using between 10 and 500 beats to train the 
local classifier it outperformed sequential selection for VEB 
and SVEB accuracy. This result suggests by forcing the 
adaptive system to focus on the difficult cases, faster 
learning has been achieved.  

The full set of SVEB and VEB classification 
performance figures are shown in table 2 for the adaptive 
system processing 100 beats. It has been compared with 
other published systems. 
TABLE  II:  PERFORMANCE (%) OF THE ADAPTIVE SYSTEM USING 100 BEATS 
TO TRAIN THE LOCAL CLASSIFIER. ABBREVIATIONS: ACC-ACCURACY, SENS-
SENSITIVITY, +P – POSITIVE PREDICTIVITY, AND FPR- FALSE POSITIVE RATE. 

 
 VEB SVEB 

 Acc Sens +P FPR Acc Sens +P FPR 
Our method 99.4 93.4 97.0 0.2 97.8 94.0 62.5 2.1 
         Unadapted [4] 97.4 77.7 81.9 1.2 94.6 75.9 38.5 4.7 
Llamedo [12] - 93 97 - - 92 90 - 
Jiang [7] 98.1 86.6 93.3 0.7 96.6 50.6 67.9 1.2 
Ince [8] 97.6 83.4 87.4 1.3 96.1 62.1 56.7 1.0 

  

The performance of our adapted system clearly 
outperforms the unadapted system processing the same 
features presented in [4]. The VEB accuracy has increased 
2% to 99.4% and the SVEB accuracy has increased 3.2% to 
97.8%. The performance increase is also seen in the other 
performance measures. Results show that our adaptive 
system exceeds the performance of the adapted systems of 
Jiang [7] and Ince [8] except for the false positive ratio 
(FPR) of the SVEB class. The reason for this is that the 
performance our system is tuned to provided balanced 
sensitivity and specificity (note specificity = 1- FPR). The 
systems of Jiang and Ince appear to be tuned for better 
specificity at the expense of reduced sensitivity. The VEB 
performance is equivalent to the performance of Llamedo’s 
system [12]. For SVEB we achieve a higher sensitivity 
(94.0% cf. 92%) but a lower positive predictivity (62.5% cf. 
90%). 

We have shown that adaptation can improve the system 
performance but we note that this has come at the expense of 
fully automatic operation of the system. 

IV. CONCLUSION 
This study has shown that an adapting heartbeat 

classification system can achieve higher classification 
performance by selecting hearts that are hard to classify to 
train the local classifier. Selection of beats was performed by 

first processing the record with a global classifier and then 
selecting heart beats based on a confidence measure 
calculated from the posterior probabilities estimates. 
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