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Abstract— The paper presents a fingertip photoplethysmog-
raphy (PPG) based technique to estimate the pulse rate of the
subject. The PPG signal obtained from a pulse oximeter is used
for the analysis. The input samples are corrupted with motion
artifacts due to minor motion of the subjects. Entropy measure
of the input samples is used to detect the motion artifacts and
estimate the pulse rate. A three step methodology is adapted
to identify and classify signal peaks as true systolic peaks or
artifact. CapnoBase database and CSL Benchmark database
are used to analyze the technique and pulse rate estimation
was performed with positive predictive value and sensitivity
figures of 99.84% and 99.32% respectively for CapnoBase and
98.83% and 98.84% for CSL database respectively.

I. INTRODUCTION

Photoplethysmography (PPG) is a technique to monitor the
dynamics of blood flow in the body using light radiation. The
PPG data signal is typically recorded by using a device which
contains an illuminating component (typically LED) and a
photo sensor (typically a photodiode). The data is recorded
by placing these two circuit components on either side of
a finger or ear lobe. The incident light radiation undergoes
attenuation along its way as it transmits through skin, blood
tissue and other blood parameters, bone and so on. This
attenuation is a function of essentially the nature and quantity
of blood parameters; such as hemoglobin, glucose etc. and
the wavelength of incident radiation.

The most significant constituents absorbing the radiation
are skin, bone, muscle, tissue bed, venous blood and pulsatile
arterial blood. The absorption signature for all the parameters
except for pulsatile arterial blood can be modeled as constant
with respect to time. However the time varying absorption of
pulsatile arterial blood provides the PPG signal its peculiar
form. Conventional practice to determine the pulse rate of a
subject is monitoring the R-R interval of his or her ECG
signal [1]. However as the periodic nature of the PPG
waveform originates from the pulsatile arterial blood, the
pulse-to-pulse interval (PPI) of the PPG signal is highly
correlated to the R-R interval of the ECG signal [2], [3]. In
other words, the pulse rate can be estimated from the PPI.
PPG has been an area of active research and finds its use
in estimation of blood parameters such as peripheral blood
oxygen saturation, hemoglobin, glucose etc [4] due to its non
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invasive nature. A qualitative analysis of the PPG signal can
be used to diagnose possible heart ailments [5].

Some specific applications require continuous measure-
ment of vital signals over a long time viz. diagnosis of
arrhythmia. The ease of acquisition and inexpensive cost
makes PPG data suitable for vitals monitoring in real time
using a wearable sensor. Pulse oximeter is also a typical such
wearable sensor used to estimate the blood oxygen saturation
of the subject non-invasively. These oximeters use LEDs of
different specific wavelengths in order to estimate the absorp-
tion characteristic of oxygenated and deoxygenated blood.
However the placement of a wearable sensor, typically a
fingertip makes the data acquisition susceptible to corruption
due to motion induced artifacts.

The artifacts are developed as a result of relative motion
between skin and the sensor. Hand movements also result
in sudden and unpredictable changes in the instantaneous
values of the PPG signals referred to as artifacts. These
artifacts can lead to inaccurate estimation of vital blood
parameters viz. blood oxygen saturation in case of oximeters
and subsequently incorrect diagnosis of diseases. In such a
case it is imperative to segment out the motion artifacts from
a PPG signal before going for diagnostic methods. Three
types of artifacts are found in the database viz.

• Absence of PPG signal
• PPG signal getting clipped
• Motion induced artifact.

A lot of attention has been given to motion artifact segmenta-
tion and various techniques have been developed. Techniques
have been reported to detect artifacts with prior information
about the movement of the subject using accelerometer [6].
Techniques discussed in [7], [8], [9] do not require any prior
information about movement of the subject. Time frequency
domain methods also have been applied to the corrupted PPG
data [10]. However it is still an active area for research in
order to increase the accuracy for the same.A

II. ALGORITHM DETAILS

The artifact segmentation and pulse rate estimation is done
in three steps; (a) identify all the possible peaks in the signal
and make a rough estimate of the pulse rate. (b) calculate
the entropy for the entire signal. (c) compare the entropy of
all the peaks obtained from steps (a) and then classify them
as valid pulse or artifact.

A. Preprocessing

No preprocessing is required for the Capnobase record-
ings. However one of the samples from CSL database con-
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Fig. 1. Membership function obtained from input PPG signal

tained lot of quantization noise and thus had to be band pass
filtered before further processing. The cut off frequencies
were 1 Hz and 10 Hz respectively.

B. Peak Identification

First all the peaks present in the input PPG signal are
identified in order to make a rough estimate of the pulse
rate. The maximum pulse rate is restricted to 160 beats per
minute. Capnobase recordings are sampled at 300 Hz and
CSL at 125 Hz. Thus the peaks which are spaced not less
than 110 samples from each other are found for Capnobase
and and 30 samples in case of CSL. Once all the peaks
are obtained in this fashion, an appropriate window of the
original signal representing one complete pulse is selected
around a peak for the entropy calculation.

C. Entropy Calculation

The entire PPG signal is divided in windows as discussed
and one such window is used as the membership function
for entropy calculation as shown in Fig. 1 (signal between
dashed lines). Entropy is calculated for each wondow using
the selected membership function. The length of each win-
dow is adjusted to make it same as the membership function
and then it is normalized before calculating the entropy for
that window.

D. Classification

The peaks obtained from first step would contain both
true systolic peaks and those arising from motion induced
artifact, if present. The entropy value for all the peaks are
considered and then a decision is made to classify the peaks
as true pulses or artifacts. Two thresholds are set in order to
distinguish between true pulses and artifacts.

III. ENTROPY MEASURE OF FUZZINESS

The concept of the entropy measure of fuzziness was
introduced by de Luca and Termini in [11]. The fuzzy
entropy is applied to ECG signals in [12], [13]. An entropy
measure of fuzziness H is a mapping from the set of all
fuzzy subsets of a base set X into the non negative reals,
i.e.

H : Fz(X)→ [O,∞). (1)

Algorithm 1 Peaks identification
loop
if d

dn (PPG(n)) = 0 && d2

dn2 (PPG(n))
* peak−dist = PPG(n)− peaks(i)
if peak−dist ≥ minThreshold
* peaks(i)← PPG(n)
* n+ +
endif
endif
endloop

Algorithm 2 Entropy calculation
* mem−f = PPG(x1 : x2)
* win = (x2 − x1 − 1)/2
loop
for i = n− win : n+ win
* h = (Aλn,k(x(n)))2 · 4PPG(i)
endfor
* H(n) =

∑
h2

endloop

A. Entropy measurement of fuzziness of PPG signal

Let us Consider a uniformly sampled discrete signal with
period T in the time interval from 0 to t. The value of the
nth sample of this signal is denoted as x(n).

To construct a fuzzy signal from the crisp signal, let us
consider a symmetric window consisting of 2k + 1 original
samples for each sampling point n, i.e. we will consider the
following set of samples:

x(n− k), x(n− k + 1), · · ·x(n) · · ·x(n+ k − 1), x(n+ k).
(2)

Next, this window of 2k + 1 samples is sorted starting
from the minimal value, i.e. Xmin(n) = x(1)(n) and ending
with the maximal value i.e. Xmax(n) = X(2k+1)(n). So, the
following relations are true:

x(1)(n) ≤ x(2)(n) · · · ≤ x(2k+1)(n). (3)

Therefore the median of the set would be

x(M)(n) = x(k+1)(n). (4)

The membership function for each point n is con-
structed in the following way. First let us assume that
An,k(xmin(n, k)) = 0, An,k(xmax(n, k)) = 0 and
An,k(xM (n, k)) = 1 and then an upper semi continuous
step-wise membership function is built according to the
formula:

An,k(x) =

{
r
k x ≤ xM (n)
2k+1−r

k x > xM (n)
(5)

where r is the number of x(i) < x.

59



Algorithm 3 Classification
* Thlow = Γ1

* Thhigh = Γ2

loop
* p← peaks(i)
if H(p) ≥ Γ1 &H(p) ≤ Γ2

* true−peak ← peaks(i)
else
* art← peaks(i)
endif
* i+ +
endloop

A parametrized version of our membership function can
be created to discriminate between certain levels of member-
ship, i.e.

Aλn,k(x) = An,k(x) · I(An,k(x)− λ), (6)

where I(An,k(x) − λ)stands for Heaviside pseudo func-
tion,

I(x) =

{
1 x ≥ 0

0 otherwise
(7)

Using the above given formulas, the entropy measure of
nth sample is calculated in the form of the sum of respective
rectangles:

H(Aλn,k,λ) = F (

2k∑
i=1

h(Aλn,k(x(i)(n)) · 4x(i)(n)). (8)

where
4x(i)(n) = x(i+1)(n)− x(i)(n). (9)

B. Modified Entropy Measure

The above technique works very well when the input
PPG signal is free of any motion artifacts. However the
technique suffers from certain shortcomings. The shape of
the membership function is fixed whereas the characteristic
shape of the PPG signal is unique to an individual and
is difficult to be modeled. As a result, the entropy values
resulting from one PPG signal are considerably different
from one individual to other. As a consequence, it is difficult
to select a threshold which would distinguish a true pulse and
an artifact for a general case.

This limitation is addressed by selecting a part of original
PPG signal itself as a membership function instead of a
fixed triangular one. We calculate mean of the peak-to-peak
distance of the peaks obtained in first step and using that
information, select a membership function representing a
complete systolic interval. The interval is selected from a
region of the original PPG signal where the deviation of
the peak-to-peak value compared to the mean distance is
minimum and has a length of 2k + 1. For every sample of
the input PPG data, a window of length same as that of

the membership function i.e. 2k + 1 is then considered to
calculate the entropy with k samples on each side of the
point in consideration.

The entropy measure is now calculated as

H(Aλn,k,λ) = F (

2k∑
i=1

h(Aλn,k(x(n)) · 4xi(n)). (10)

where Aλn,k(x(n)) is the membership function obtained
from the signal itself i.e.

Aλn,k(x(n)) = ppg(n1 : n2) (11)

and
4xi(n) = xi+1(n)− xi(n). (12)

The value of λ is is set to 0, n1 and n2 are the start and end
points of the membership function from Fig. 1.

IV. RESULTS AND DISCUSSION
The first step used to identify all potential systolic peaks

and possible motion artifact induced peaks performed highly
accurately. The number of peaks missed by the algorithm
is very small although improvements can be made to make
it more robust in order to identify all possible peaks. The
function h is defined as h(n) = n2 and similarly, H is
defined as H(n) = n2. The length of the membership
function 2k + 1 varies from signal to signal as it represents
the length of one full systolic cycle.

The algorithm was calibrated and tested using the Cap-
nobase database [14] and the CSL Benchmark dataset [9].
Capnobase consists of 42 recordings which include 23
recordings free from any sort of artifact and remaining 19
contain artifacts. CSL dataset consists of 2 recording and
both contain artifacts. The entropy values for the artifact free
recordings strongly exhibit a regular pattern with very few
corrections shown by 2 recordings. The recordings contain-
ing artifact manifest a similar uniform pattern for regions
containing true systolic peaks; however the entropy values
are significantly different for the peaks corresponding to
artifacts. The entropy values close to 1 indicate a high degree
of similarity between the signal window being considered
and the membership function. It also follows that values
differing significantly from 1 suggest that the signal window
has low degree of similarity with the membership function.
Very high entropy values arise due to a very large gradient
of the input PPG signal at the concerned point. The gradient
of a healthy PPG data follows a specific pattern, very high
gradient values thus can be attributed to artifact induced
corruption in data. The classification is carried out using two
thresholds; a lower bound (Γ1) to eliminate data samples
bearing very low degree of similarity and a higher bound
(Γ2) to remove data samples with very high gradient. Γ1

is assigned value of 0.3 ·mean(entropy peaks) and Γ2 is
assigned 1.5 ·mean(entropy peaks).

The performance of the algorithm for identifying true
pulses is observed using the positive predictive value (PPV)
and sensitivity (Se) parameters defined as follows:
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Fig. 2. PPG signal corrupted by motion artifact
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Fig. 3. Entropy value of the corrupted signal in Fig. 2

Sensitivity =
tp

tp+ fn
(13)

Positive Predictive V alue =
tp

tp+ fp
(14)

The calculated PPV and Se figures for the algorithm
are for Capnobase and CSL database are as discussed in
Table I and in Table II respectively. The performance of the
algorithm was predictably better when applied on PPG data
void of any artifacts. PPG signal corrupted by artifact and the
corresponding entropy values for the same signal as shown
in Fig. 2 and Fig. 3 respectively.

V. CONCLUSIONS
In this paper, an entropy based technique to detect motion

artifact and estimate pulse rate of the subject has been estab-
lished. This technique has been effective to identify the peaks
and then detect the artifact and determine the pulse rate of
the subject. The entropy measure for the input data samples
is a good classification feature for discriminating true pulses
from artifact. The selection of correct membership function
is essential for a good performance of the algorithm and
further improving this selection criteria would enhance the
performance.

The discussed approach can be extended for the diagnosis
of cardiac diseases related to the pulse rate information
of the subject. Diseases like tachycardia, braddycardia and
arrythmias can be diagnosed from the PPG data after pulse
identification and artifact removal.

TABLE I
ALGORITHM PERFORMANCE BASED ON CAPNOBASE DATABASE

Annoted Data PPV
(%)True

Peaks Artifact None

Entropy
Based
Algorithm

True Peaks 27725 100 91 99.84
Artifact 3 30 -
None 42 31 -

Se(%) 99.32

TABLE II
ALGORITHM PERFORMANCE BASED ON CSL BENCHMARK DATABASE

Annoted
pulses

Correct
pulses

Incorrect
pulses

Undetected
pulses Se (%) PPV

(%)
15867 15683 186 186 98.84 98.83
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