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Abstract— In this study we propose a novel atrial activity-
based method for atrial fibrillation (AF) identification that
detects the absence of normal sinus rhythm (SR) P-waves from
the surface ECG. The proposed algorithm extracts nine features
from P-waves during SR and develops a statistical model to
describe the distribution of the features. The Expectation-
Maximization algorithm is applied to a training set to cre-
ate a multivariate Gaussian Mixture Model (GMM) of the
feature space. This model is used to identify P-wave absence
(PWA) and, in turn, AF. An optional post-processing stage,
which takes a majority vote of successive outputs, is applied
to improve classier performance. The algorithm was tested
on 20 records in the MIT-BIH Atrial Fibrillation Database.
Classification combining seven beats showed a sensitivity of
99.28%, a specificity of 90.21%. The presented algorithm has
a classification performance comparable to current Heartrate-
based algorithms yet is rate-independent and capable of making
an AF determination in a few beats.

I. INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia. It affects an estimated 2.3 million United States
citizens, and this number is only expected to increase as
the general population ages. Automatic detection of AF
could provide cardiologists with significant information for
accurate and reliable diagnosis and monitoring of AF and is
crucial for clinical therapy. However, monitoring AF remains
an open area of research when the heart rate is controlled.

AF is the disorganized propagation of electrical activity in
the atria that causes the atria to fail to contract in an orga-
nized fashion. As a result, the atrial depolarization wavefront,
the P-wave, measured during sinus rhythm (SR) devolves
into a series of fibrillatory waves (i.e., f-waves) in the sur-
face electrocardiogram (ECG). Additionally, the fractionated
electrical wavefront stimulates the atrioventricular (AV) node
inconsistently, producing irregular ventricular contractions.
Based on this observation, current methods to detect AF can
be divided into two main approaches: (i) R-R interval (RRI)
analyses detect the irregular ventricular heartbeat that is often
associated with atrial arrhythmia, and (ii) atrial activity (AA)
approaches detect a lack of organized atrial activity in the
ECG. The most dominant methods in the literature [1]–
[10] which boosts classifier performance for each of the two
algorithms. are based on RRI analysis. However, current top-
performing RRI-based algorithms process and make an AF
determination using relatively long windows of data (50 to
100 beats), which can obscure the onset and offset of AF
episodes. As a result, very short AF episodes may not be
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detected. Furthermore, RRI algorithms are rate-based and
cannot work if the patient has a pacemaker or is taking rate-
control drugs, or if other heart issues, such as atrioventricular
(AV) block, occur simultaneously with AF.

Targeting an AA-based method allows for the rate-
independent detection of very short episodes because de-
terminations can be made with as low as a single beat.
The main challenge with a PWA-based technique is that the
ECG captures a nonstationary signal, and the atrial activity
has a relatively low signal-to-noise ratio (SNR) compared to
ventricular activity. Our proposed classifier is an anomaly
detector that trains on normal SR P-waves and identifies
P-wave absence as a beat which does not contain a P-
wave similar to ones seen in the training set. As explained
in Section II, the algorithm is executed in two phases:
the training phase and the testing phase. In both phases,
preprocessing and feature extraction is performed on the
supposed P-wave. The training phase creates a statistical
model that describes the feature space distribution of P-
waves in the training set. The testing phase calculates a
score that reflects the likelihood that a new beat contains
a P-wave. In this way, P-wave absence (PWA) and, in turn,
AF are detected. The proposed method is evaluated with a
paroxysmal ECG database, and the results are reported in
Section III.

II. MATERIALS AND METHODS

A. Database and ECG Records

MIT-BIH AF Database from Physiobank [11] was used
for validation of the proposed AF detection algorithms. The
dataset includes 25 long-term (10 hr) ECG recordings with
AF (23 paroxysmal and 2 persistent) and contains 299 AF
episodes (about 93.4 h). Out of the total 23 paroxysmal
recordings, this study uses only the 20 recordings that contain
sufficient SR data to construct a training set.

B. Training Set Selection

A total of 10 minutes of training data for each record
is selected from a period of SR at least 35 minutes long.
Training intervals and the periods of wait time between the
intervals are determined by considering what recordings are
practical within the confines of a visit to one’s clinician.
Training data is selected from two 5-minute intervals spaced
10 minutes apart. Additionally, to ensure training data is not
immediately following or preceding AF, a minimum of 7.5
minutes of SR were required to precede and succeed the two
5-minute training sets.
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Fig. 1. Block diagram representing the proposed PWA algorithm.

C. R-wave Detection and P-wave Extraction

Figure 1 shows the proposed method’s block diagram. A
third-order butterworth bandpass filter is applied with poles
at 0.5 Hz and 50 Hz to reduce baseline wander and powerline
noise. Then R-wave detection and P-wave extraction are
performed in two steps. First, R markers are placed at the
point of maximum absolute derivative on the QRS complex.
Then, P onset and P offset points are manually chosen from
the segment preceding the R-wave marker, and supposed P-
waves are extracted from the ECG recording.

D. Feature Extraction

A total of nine features are extracted: six features that
estimate the morphology and three statistical features. The
six morphological features are obtained by segmenting the
P-wave into six contiguous sections and taking the mean
value of each section. The three statistical features include
variance, skewness, and kurtosis. Given an input vector, p,
the variance is calculated as shown below:
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where S is the skewness, `p is the length of the input vector,
and µp is the mean of vector p. The kurtosis is calculated

as given below:
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where K is the kurtosis, `p is the length of the input vector,
and µp is the mean of vector p. All the statistical features are
calculated as sample statistics and additional terms to adjust
for bias are included.

E. Training

As shown in Figure 1A, training begins by extracting
a feature vector for each beat in the training set. The
feature space distribution of SR P-waves is used to create
a statistical model that generalizes SR P-waves. The nine-
dimensional feature space is modeled by a multivariate Gaus-
sian mixture model (GMM). The Expectation-Maximization
(EM) algorithm is employed to generate the model for the
training set. Because the EM algorithm operates with a
predefined number of hidden distributions and its outcomes
vary for different initializations, the optimal model is de-
termined iteratively. Beginning with one hidden distribution,
ten models are created. The model with the most successful
initialization is chosen. Similarly, a best model with two
hidden distributions is determined. The number of hidden
distributions is increased until the quality of the modeling
(measured by log-likelihood) ceases to significantly improve
by more than 1%.

The iterative application of the EM algorithm converges
on a model to describe the feature space distribution of
the training set. The model is defined by the set of unique
parameters µ, Σ, and w for each hidden distribution. These
parameters are used in the test/processing stage to detect AF.

F. Classification

Test set evaluation begins with P-wave feature extraction
as shown in Figure 1B. The classifier determines if the
feature vector constitutes PWA or AF. The first classifier
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stage calculates the Mahalanobis distance of the feature
vector from each hidden distribution center. The calculation
is shown in Equation 4:

Mj(f) =

√
(f − µj)TΣj

−1(f − µj) (4)

where f is the feature vector, j is the index of the hidden
distribution, Mj is the M distance with respect to jth

hidden distribution, µj is the mean/center of the jth hidden
distribution, Σj is the covariance matrix of the jth hidden
distribution and T denotes the matrix transpose.

The M distance is then scaled by a spread parameter
which adjusts the generalization of the model. Increasing
the spread allows for a wider range of variation in normal
SR. Adjusting the spread parameter has the same effect as
adjusting the threshold parameter although the relationship
between the two is inverse and non-linear. For the purposes
of this method, the spread was empirically chosen with a
value of 500. Smaller or larger values result in less fluent
optimal thresholds, which must be specified with greater
precision much closer to 0 or 1, respectively. Each scaled
M distance is passed through a radial basis kernel function,
scaled again according to the prevalence of that distribution
in the training set, and summed together. This described
calculation is termed the pScore and is shown in Equation
5:

pScore(f) =

NZ∑
j=1

wj exp(−(
ln(12)

s
)M2

j ) (5)

where NZ is the number of hidden distributions, s is the
spread parameter (i.e., s = 500), wj is the weight applied to
the jth distribution and is equal to the probability of the jth

distribution.
The pScore reflects the likelihood that a feature vector

extracted from the segment preceding the QRS complex is
also a P-wave. A pScore of 1 reflects a near absolute certainty
that the evaluated segment is a P-wave, while a pScore of 0
reflects a near absolute certainty that the evaluated segment
is not a P-wave. The pScore is compared to an empirically
determined threshold, Tp (as will be explained in Section
III), to determine whether or not PWA and, in turn, AF are
present.

G. Majority Voter Post-processing

The final stage of classification is the implementation of
the optional majority voter post-processing stage. Cases of
noise, artifact, and/or ectopy isolated to a single beat that
potentially cause classification errors and are not clinically
relevant can be effectively eliminated. By taking a majority
vote of an odd number of sequential AF determination out-
puts, classification errors in a minority of beats are ignored.

III. RESULTS

The proposed method was applied to the AF database in
Section II-A. The classifier proposed in this work generates
statistical models specific to each record by training with
patient-specific training sets. The average number of hidden
distributions that the iterative EM algorithm converges upon

Fig. 2. ROC curves for the best performing record (Record 04936) and
the worst performing record (Record 06995) with area under the curve of
0.99 and 0.86, respectively. The circles on the graph locate the optimum
threshold for each patient.

TABLE I
TABLE OF OPTIMUM THRESHOLD VALUE FOR EACH RECORD

ID Optimum ID Optimum
Threshhold Threshhold

04015 0.74 04043 0.55
04048 0.69 04126 0.88
04746 0.83 04908 0.65
04936 0.75 05091 0.84
05121 0.46 05261 0.83
06453 0.74 06995 0.67
07879 0.83 07910 0.88
08215 0.69 08219 0.65
08378 0.55 08405 0.70
08434 0.83 08455 0.75

is 3.75 hidden distributions and ranges between 2 and 5
hidden distributions. This result confirms that the statistical
distribution of the P-wave feature distribution is relatively
complex and warrants being modeled by the GMM used in
this study. We also found that the correlation of the number
of training beats and the number of hidden distributions is
equal to 0.20. The low correlation between training beats
and the number of hidden distributions suggests training set
sizes are sufficiently large.

Processing features extracted from each beat results in
the unthresholded classifier output, the pScore, which is a
reflection of the likelihood that a particular beat contains a
P-wave. The pScore is compared to a threshold to acquire
the final classification. Varying this threshold and calcu-
lating the sensitivity and specificity generates the receiver
operating curve (ROC), which can be used to empirically
determine the optimal threshold value. ROC curves and the
optimal threshold values are generated automatically using
MATLAB’s perfcurve function. Patient-specific ROC curves
for the best and worst cases along with the location of the
optimum threshold are presented in Figure 2. These optimal
threshold values are listed in Table I.

Using the optimal thresholds determined from the ROC
curves (Table I ), the test set is processed for each record.
Furthermore, the test set is processed with majority voter
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 Mean Median 
Vote 
Size 

Se 
(%) 

Sp 
(%) 

PPV 
(%) 

Err 
(%) 

Se 
(%) 

Sp 
(%) 

PPV 
(%) 

Err 
(%) 

1 90.84 86.78 59.62 11.78 91.98 86.18 70.70 13.02 
3 95.76 88.89 62.56 8.77 97.45 88.01 76.02 9.40 
5 96.70 90.46 64.40 7.42 98.67 90.04 80.39 7.80 
7 97.23 90.11 64.49 7.14 99.28 90.21 80.42 7.12 

 

 TABLE II
MEAN AND MEDIAN PERFORMANCE RESULTS WITH VARIOUS MAJORITY

VOTER SIZES AND THRESHOLDS SET TO THE OPTIMAL THRESHOLD

VALUES.

post-processing described in Section II-G. Results in which
the voting consists of 1,3,5, and 7 beats are presented in
Table II. Mean and median results across all 20 records are
presented for both threshold applications and for all 4 ma-
jority voter settings. Several observations can be made from
the classifier performance results in table II: (i) Increasing
the number of beats included in the majority voting improves
classifier performance, but performance gains decrease with
each additional included beat. (ii) Generally, the median
classifier performance is higher than the mean classifier per-
formance, indicating negative skewness. Negative skewness
for each threshold setting (median >mean) corresponds to a
majority of records producing better results with a few poor
performing outliers.

The proposed algorithm is compared against other algo-
rithms using statistical classification measurements includ-
ing sensitivity (Se), specificity (Sp), and the length of the
window (WL) that is evaluated to determine AF (see Table
III). Many of the algorithms ( [1]–[7]) were selected for
comparison because they were identified by Larburu et al.
[8] as the best performing results for particular methods;
further evaluation of the algorithms was also provided by
Larburu et al.. Additional algorithms selected for comparison
represent more recent work, including ectopic beat removal
( [9], [10]) which boosts classifier performance for each of
the two algorithms. Our algorithm is capable of classifying
AF with a very high sensitivity (99.28% ), which is the
highest among all compared algorithms with a comparable
specificity. It is capable of making a rate-independent AF
determination with fewer beats and a smaller window length
than other algorithms. Due to the finer temporal resolution
of the proposed algorithm, shorter episodes can be detected
and AF onset and offset can be identified more accurately.

IV. CONCLUSION

In this study, we proposed a novel feature extraction
and classification approach that detects AF through direct
analysis of AA. We derive nine statistical and morphological
features from SR P-waves and train a multivariate GMM-
based classifier to model the distribution of SR P-waves in
feature space. We then detect any P-wave variations that
occur during AF, thereby detecting AF episodes by determin-
ing the absence of SR P-waves in the ECG recordings. The

Algorithm* Method* WL**
(seconds)* Se*(%)* Sp*(%)*

Moody%et%al.%
1983% RRI% 60% 87.54% 95.14%

Slocum%et%al.%
1992% PWA/FSA% 180% 62.80% 77.46%

Cerutti%et%al.%
1997% RRI% 90% 96.10% 81.55%
Tatento%et%
al.2001% RRI% 50% 91.20% 96.08%
Logan%et%al.%
2005% RRI% 120% 87.30% 90.31%
Couceiro%et%
al.2008%

RRI%+%%
PWA/FSA% 60% 96.58% 82.66%

Babaezaideh%
et%al.%2009% RRI/FSA% 40% 87.27% 95.47%
Dash%et%al.%
2009% RRI% 128%beats% 94.4% 95.1%
Huang%et%al.%
2011% RRI% 101%beats% 96.1% 98.1%
Proposed%
Work%2014% PWA% 7%beats% 99.28% 90.21%

%

TABLE III
COMPARISON OF AF DETECTION ALGORITHMS INCLUDING

ADDITIONAL EVALUATION PERFORMED BY LARBURU at al. [8].
UNREPORTED PERFORMANCE MEASURES ARE DISPLAYED AS A DASH.

proposed algorithm achieves performance measures compa-
rable to RRI-based algorithms despite only using a few beats
(seven beats), whereas the majority of RRI algorithms utilize
50 to 100 beats. The single-beat, rate-independent nature
of the proposed algorithm could provide clinicians with a
reliable tool to detect the SR and AF transition that will
happen over a few beats with no limitations for patients with
rate-controlled drugs or pacemakers.
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