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Abstract—This preliminary study investigated the use of
cardiac information or more specifically, heart rate variability
(HRYV), for automatic deep sleep detection throughout the night.
The HRYV data can be derived from cardiac signals, which were
obtained from polysomnography (PSG) recordings. In total 42
features were extracted from the HRV data of 15 single-night
PSG recordings (from 15 healthy subjects) for each 30-s epoch,
used to perform epoch-by-epoch classification of deep sleep and
non-deep sleep (including wake state and all the other sleep
stages except deep sleep). To reduce variation of cardiac physi-
ology between subjects, we normalized each feature per subject
using a simple Z-score normalization method by subtracting
the mean and dividing by the standard deviation of the feature
values. A correlation-based feature selection (CFS) method was
employed to select informative features as well as removing
feature redundancy and a linear discriminant (LD) classifier
was applied for deep and non-deep sleep classification. Results
show that the use of Z-score normalization can significantly
improve the classification performance. A Cohen’s Kappa
coefficient of 0.42 and an overall accuracy of 81.3% based on
a leave-one-subject-out cross-validation were achieved.

I. INTRODUCTION

With polysomnography (PSG), the “gold standard” for
objective sleep assessment, overnight sleep can be classified
as wake, rapid-eye-movement (REM) sleep, and one of non-
REM (NREM) sleep stages N1, N2 and N3 according to
the guidelines of American Academy of Sleep Medicine
(AASM) [1]. N3 usually corresponds to slow wave sleep
(SWS) or “deep sleep”. Deep sleep is the most restorative
period of sleep for metabolic function, where body energy
can be efficiently conserved and recovered. It is therefore
important to detect deep sleep throughout the night from a
healthcare point of view.

Cardiac information or more specifically, heart rate vari-
ability (HRV), has been proved to correlate with autonomic
nervous system where autonomic activity differs across sleep
stages [2]. For example, deep sleep is in association with
decreased sympathetic activity which is reflected by the HRV
low-frequency power [3]. In this matter, HRV information
can thus be in turn used to detect deep sleep.

HRV data have been more and more considered for sleep
staging or sleep stage detection [4], [5]. This is because, com-
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pared with traditional PSG, HRV data can be acquired easier
or more unobtrusively with, e.g., photoplethysmography [6]
and balistocardiograhy [7]. Many studies have investigated
classifications between sleep and wake [8], between REM
and NREM sleep [9], and between wake, REM and NREM
sleep [4]. However, detecting deep sleep has not been well
studied. Shinar et al. [10] developed an HRV-based deep
sleep detector and achieved an overall accuracy of ~80%,
but they only chose a very small portion (a total deep and
non-deep sleep duration of 50 minutes each) of the whole-
night recordings from all subjects for classification. In this
study, we addressed the problem of overnight deep and non-
deep sleep classification using solely HRV data.

We extracted a total of 42 features from the HRV data.
These features were computed on each 30-s interval (or
epoch) based on the AASM guidelines [1]. For each subject,
the values of each feature were normalized to have a zero
mean and unit variance (i.e., Z-score normalization), aiming
at reducing the between-subject variation reflected by the
features (caused by the difference in cardiac physiology).
This was expected to help improve the deep and non-deep
sleep classification.

A linear discriminant (LD) classifier was simply adopted
in this work since it has been previously shown to be an
appropriate method in sleep staging or sleep stage detection
using HRV data [4], [5], [8].

II. MATERIALS AND METHODS
A. Data Set

Single-night PSG data of 15 healthy subjects were in-
cluded in our data set. They had a Pittsburgh Sleep Qual-
ity Index (PSQI) of less than 6 [11]. Nine subjects were
monitored (Alice 5 PSG, Philips Respironics) in Boston,
USA, during 2009 at the Sleep Health Center and six
were measured (Vitaport 3 PSG, TEMEC) in Eindhoven,
the Netherlands, during 2010 at the High Tech Campus.
Each subject provided an informed consent and the study
protocol was approved by the Ethics Committee of the two
sleep laboratories. The PSG recordings are comprised of
multi-channel signal modalities such as electroencephalo-
gram (EEG), electromyogram (EMG), electroocculogram
(EOG), electrocardiogram (ECG), oxygen saturation, and
respiratory effort. From the PSG recordings, only the ECG
data (modified lead II, sampled at 500 Hz) were used for
deep sleep detection. We clipped each PSG recordings to
the time interval from the moment when the subject turned
off the lights with the intention of sleep until the moment



the lights were turned on before this subject got out of bed
in the morning.

Sleep stages were manually scored as wake, REM sleep,
and N1-N3 of NREM sleep on each 30-s epoch by sleep
experts based on the multi-channel bio-signals of PSG ac-
cording to the AASM guidelines [1]. To perform deep and
non-deep sleep classification, N3 was considered the deep
sleep class (DS); and wake, REM, N1, and N2 sleep were
merged into a single non-deep sleep class (NDS). Table I
summarizes the subject demographics and sleep statistics.

TABLE I
SUBJECT DEMOGRAPHICS AND SLEEP STATISTICS

l Parameter [ Mean + Std
Gender 5 males and 10 females
Age (years) 31.0 £ 104
Body mass index (kg/m?) 244 433
Total recording time (hours) 72 £ 1.1
Sleep efficiency (%) 92.3 £ 3.8
Deep sleep (%) 204 £ 9.2
Non-deep sleep (%) 79.6 £ 9.2

B. HRV Features

The heart beats of an ECG signal (high-pass filtered with
a cut-off frequency of 0.8 Hz and normalized in regard
to mean and amplitude) were identified with an R-peak
detector based on the algorithm proposed by Hamilton and
Tompkins [12], resulting in inter-beat intervals or an HRV
series. It was then re-sampled at a sampling rate of 4 Hz
using linear interpolation. The ectopic RR intervals that are
longer than 2 s or shorter than 0.3 s (possibly caused by,
e.g., motion artifacts) were excluded. Here 42 epoch-based
HRYV features (known from literature) were extracted. They
are time-domain and frequency-domain features [4] and non-
linear features measured by multi-scale sample entropy [13]
and detrended fluctuation analysis [14].

C. Feature Selection

We applied a correlation-based feature selection (CFES) al-
gorithm [15] to reduce feature dimensionality and meanwhile
remove correlated features. CFS is a filter-based algorithm
taking the correlation between features and between features
and classes into account. It towards finding an ‘optimal’
feature subset containing features that are as much as possi-
ble uncorrelated with each other and highly correlated with
class. The heuristic evaluation criterion of a feature subset
F containing k features based on CFS is given by

= k i pcf
VE+k-(k=1)pss’
where M . represents the “merit” of the feature subset F',
pcs is the mean feature-to-class correlation, and p;; the
mean correlation among features. Starting with no features

in the subset, a forward search can be used to combine
additional features one-by-one until no increase of merit was
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observed when in combination with them. More details of
the CFS algorithm can be found elsewhere [15].

D. Feature Normalization

All the features were normalized via a Z-score method
for each subject. Let us consider a feature x4 from subject s
containing feature values of n epochs throughout the night,

the normalized feature values can be computed such that
~ Tsg — ﬂms
Tg = ——1
Ox

2

where p,, and o, are the mean and the standard deviation
of z,, respectively. As mentioned before, the use of subject-
specific (Z-score) normalization should enable reduction
of between-subject variation evoked by their physiological
difference to a certain extent.

E. Feature Separability

We used a Mahalanobis distance metric MD to assess the
separability of each feature between classes. For a single
feature x, its separability is given by

DS — s

Og

MD, ; 3)

where £S5 and NP5 represent mean values of DS and NDS,
respectively, and o, is the population standard deviation of
this feature. A higher feature separability of in discriminating
between the two classes is indicated by a larger MD value.

F. Deep Sleep Detection

A well-known LD classifier was adopted to classify deep
and non-deep sleep on an epoch-by-epoch basis. Conven-
tional metrics sensitivity, specificity, precision, and overall
accuracy were first used in a binary classification to assess
the classification performance. In addition to these, we
also utilized the Cohen’s Kappa coefficient of agreement.
It is considered a better metric when class distribution is
imbalanced (here DS epochs account for an average of
approximately 20% of the night which is much less than
NDS epochs). Note that in this study DS and NDS were
considered the positive and the negative class, respectively.
To compare the classifiers across the entire solution, we
used the Receiver Operating Characteristic (ROC) curve
which plots sensitivity (true positive rate) versus 1-specificity
(false positive rate) on a graph. The ‘area under the ROC
curve’ (AUROC) was then computed as a single metric
that quantifies the classification performance in the solution
space. A better classification performance corresponds to a
larger AUROC value.

It is known that LD classifier is sensitive to prior proba-
bility of each class. A time-varying prior probability (TVPP)
has been successfully used for classifying wake, REM sleep
and NREM sleep [4], [5]. This was based on the observation
that the probabilities of different classes change over time
throughout the night. Similarly, the TVPP of DS and NDS
for each epoch was obtained by computing the percentage
that specific epoch was labeled as each class with respect to
time (or epoch index) based on training set [4].



In order not to bias the classification results, experi-
ments were conducted using a leave-one-subject-out cross-
validation (LOSOCYV) to evaluate the classifier. During each
iteration of the cross-validation, data from 14 subjects were
used to train the classifier and the data from the remaining
subject were used for testing. Afterwards, results of all
testing sets were then averaged, yielding the overall clas-
sification performance. Note that feature selection was per-
formed on each training set of the cross-validation, resulting
in 15 feature subsets. To assemble a single feature set for
evaluation and avoid biasing the results, only the features
included in all those feature subsets were eventually selected
and then used to test the classifier using LOSOCV.

III. RESULTS AND DISCUSSION

After using CFS during the cross-validation procedure,
three HRV features were selected for deep and non-deep
sleep classification. They are: 1) SDNN, the standard de-
viation of inter-beat intervals, 2) MRF, the mean respira-
tory frequency estimated from HRV which corresponds to
the frequency of spectral peak in the high-frequency band
between 0.15 Hz and 0.4 Hz, and 3) PMREF, the power
of MRF. The separabilities of these three features without
and with applying subject-specific Z-score normalization are
compared in Table II. It can be seen that normalizing the
features per subject clearly increases their separability (as
measured by the Mahalanobis distance MD).

TABLE 11
FEATURE SEPARABILITY (MD) OF SELECTED FEATURES WITH AND
WITHOUT SUBJECT-SPECIFIC (Z-SCORE) FEATURE NORMALIZATION

Selected feature - [ SDNN  MRF _ PMRF
Without normalization 0.60 0.55 0.64
With normalization 0.93 0.61 0.81

Note: Results are pooled over all 15 subjects.

Table IIT presents the overnight deep and non-deep clas-
sification results (obtained through the LOSOCYV) using the
selected HRV features. In the table, the precision, sensitivity,
specificity, accuracy, Kappa, and AUROC are shown and
compared with and without using subject-specific (Z-score)
normalization. After applying the normalization, an average
Kappa of 0.42 4+ 0.16 (versus 0.35 £+ 0.22) and an aver-
age accuracy of 81.3 £ 3.5% (versus 79.2 £+ 7.6%) were
achieved. To examine the significance of their differences, a
paired Wilcoxon signed-rank test (one-sided) was used ac-
cordingly. We notice that the normalization can significantly
improve the performance of deep sleep detection. Moreover,
the variances of the results decrease after using the proposed
Z-score feature normalization method for each subject, which
indicates that this method can help reducing the between-
subject variations to some extent. As shown in Figure 1,
the ROC curves of deep sleep detection obtained with and
without the normalization are compared in a two-dimensional
solution space. In the figure, we also observe a performance
enhancement after normalizing the features for each subject.
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TABLE III
LOSOCYV RESULTS OF OVERNIGHT DEEP SLEEP DETECTION WITH AND
WITHOUT SUBJECT-SPECIFIC (Z-SCORE) FEATURE NORMALIZATION

l Metric [ Without normalization =~ With normalization
Precision (%) 50.3 £ 26.1 53.1 £ 223
Sensitivity (%) 52.6 +24.8 59.6 £ 15.2
Specificity (%) 872 £ 11.0 87.6 + 5.7
Accuracy (%) 792 £ 7.6 81.3 + 3.5™s
Kappa (-) 0.35 £ 0.22 0.42 £+ 0.16*
AUROC (-) 0.80 £+ 0.07 0.84 £+ 0.07*

Note: Three features SDNN, MRF and PMREF selected by CFS were used.
Results are averaged over all subjects.

*Significance of difference was examined with a Wilcoxon signed-rank test
on accuracy, Kappa, and AUROC, at p<0.05. ns: not significant.
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Fig. 1. ROC curves of deep and non-deep sleep classification obtained

with (solid) and without (dash) subject-specific Z-score normalization.

The confusion matrix obtained with the Z-score normal-
ization is shown in Table IV, where the misclassifications of
different sleep stages and wakefulness are indicated. It can
be clearly observed that around 17.5% of N2 epochs were
misclassified as DS, which implies a presence of difficulty
in discriminating between N2 and deep sleep based on HRV
data. As a matter of fact, it has been shown that N2 and
N3 sleep are very similar in regard to autonomic nervous
activity [2]. This would result in performance limitation in
classifying deep and non-deep sleep. Nevertheless, further
explorations are encouraged in better separating these two
sleep stages through the use of cardiac activity.

Although the Z-score normalization is able to improve the
classification performance by reducing between-subject vari-
ations manifested by cardiac activity, it might not be the most
appropriate method. For example, it is sensitive to outliers
of feature values. Some other normalization methods which
are robust to feature outliers (e.g., quantile normalization
[16] and winsorization [17]) merit further investigation. In
addition to this, the Z-score normalization assumes that all
the subjects have similar proportions of sleep stages over
night. However, this might not always hold, particularly for
subjects in different age groups [18]. Therefore, a distribution



TABLE IV
CONFUSION MATRIX OF DEEP SLEEP DETECTION USING LOSOCV
WITH SUBJECT-SPECIFIC (Z-SCORE) FEATURE NORMALIZATION

Confusion matrix Classification

DS NDS

DS 1,456 1,079

NDS 1,274 8,787

PSG  (Wake) (53) (881)
(REM) (100) (2,021)

(N1) (63) (906)
(N2) (1,058)  (4,979)

normalization method (e.g., histogram equalization [19])
might be an option to deal with this issue.

As shown in Table V, compared with the deep sleep
detector developed by Shinar et al. [10] using HRV data, we
achieved a slightly better performance (with an overall ac-
curacy of 81.3% versus 79.5%). Hedner et al. [20] evaluated
a sleep stager and obtained a Kappa of 0.48 for classifying
deep and non-deep sleep, which is better than our result.
However, they used signal modalities including peripheral
arterial tone (PAT), oxyhemoglobin saturation (OS), and
actigraphy (AC). Using additional signal modalities which
are able to be unobtrusively acquired (e.g., respiratory effort),
is therefore expected to help obtain a better performance in
detecting deep sleep. This will be studied in future work.

TABLE V
COMPARISON OF DEEP SLEEP DETECTION PERFORMANCE

Study — Hedner et al. [20]  Shinar et al. [10]  This paper ‘
Modality PATT, 0S¥, ACS HRV HRV

# Subjects 227 34 15

# Epochs 198,815 200# 12,596
Accuracy™ 88.5% 79.5% 81.3%
Kappa* 0.48 - 0.42

*Peripheral arterial tone; TOxyhemoglobin saturation; §Actigraphy.
#Results of only 200 epochs (100 deep sleep epochs) were presented.
*Results were re-computed based on the reported confusion matrix.

IV. CONCLUSION

An overnight deep sleep detector based on cardiac activity
was developed. A total of 42 features were extracted from
the HRV series for each 30-s epoch and three features were
selected using the CFS feature selection method. By normal-
izing (Z-score) the feature values over the entire night for
each subject, the difference between subjects in physiology
manifested by the features can be reduced to some extent.
This can yield deep sleep detection results that are superior
to those obtained without performing the subject-specific
normalization on the features. With the normalization, we
achieved a Cohen’s Kappa coefficient of 0.42 and an overall
accuracy of 81.3% in classifying deep and non-deep sleep,
tested with an LOSOCYV on an LD classifier. In addition, we
found that most of the misclassified deep sleep epochs are
in N2 sleep.
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