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Abstract— Pattern recognition based myoelectric prostheses
(MP) need a training procedure for calibrating the classifier.
Due to the non-stationarity inhered in surface electromyogra-
phy (sEMG) signals, the system should be retrained day by
day in long-term use of MP. To boost the training procedure
in later periods, we propose a method, namely Mixed-LDA,
which computes the parameters of LDA through combining
the model estimated on the incoming training samples of the
current day with the prior models available from earlier days.
An experiment ranged for 10 days on 5 subjects was carried
out to simulate the long-term use of MP. Results show that
the Mixed-LDA is significantly better than the baseline method
(LDA) when few samples are used as training set in the new
(current) day. For instance, in the task including 13 hand and
wrist motions, the average classification rate of the Mixed-LDA
is 88.74% when the number of training samples is 104 (LDA:
79.32%). This implies that the approach has the potential to
improve the usability of MP based on pattern recognition by
reducing the training time.

I. INTRODUCTION

Surface electromyography (sEMG) is the electric potential
measured on the surface skin of a muscle. It contains
abundant control information from the central nervous sys-
tem (CNS) and can be used to control electrical powered
prostheses [1].

Recently, a large number of studies describing sEMG
pattern recognition have been carried out to accomplish
the multi-functional prosthetic control [2]–[4]. By extracting
sEMG features with high discriminant power and design-
ing appropriate classification techniques, the framework can
achieve high classification accuracies (above 90%) on a large
number of motion classes (above 10) [3]–[5].

However, it usually requires a long time to train (calibrate)
the classifier for obtaining high recognition rate [2], [3], [5].
Furthermore, the durations of the experiments are relatively
short (within a few hours), comparing with the practical
usage of myoelectric prostheses (across days, months or
years). It is known that long-term sEMG signals would
change their characteristics, caused by electrode conductivity
changes, electrophysiological changes, electrode shift, etc
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[6]. Such inherent non-stationarity would lead to deteriora-
tion on sEMG pattern recognition, as reported in [7] and [8].
To alleviate this effect, the classifier should be re-calibrated
in the new day when the prostheses are re-donned [6], which
is time-consuming and boresome to the users.

Despite intrinsic non-stationarity in long-term sEMG sig-
nals, we hypothesize that there are still some common char-
acteristics in them for the same motion; once the myoelectric
prostheses (MP) is custom-built for one individual amputee,
the number of electrodes and the muscles from where the
sEMG signals would be acquired might not change. There-
fore, in the long-term use of MP, the classifiers trained in the
earlier days may be partially consistent with sEMG features
in the current (later) day. These earlier classifiers can be
integrated into training process of the current day. By this
method, we anticipate the classifier can be trained faster than
learning from scratch.

To realize this idea, we propose a algorithm based on
linear discriminant analysis (LDA) [9], which is called
Mixed-LDA. This algorithm computes the parameters of
LDA through combination of the model estimated on the
incoming training samples of the current day with the prior
models available from earlier days. An experiment ranged
for 10 days, which simulated the scenario of long-term use
of MP, was carried out to validate the proposed method.
Results show that the Mixed-LDA is significantly better than
the baseline method (LDA) when few samples are used as
training set. The effort in this study has the potential for
improving the usability of MP based on pattern recognition,
given the promising results.

II. METHODS

A. Background

LDA might be the most popular classifier used in pattern
recognition based MP because of its effectiveness and sim-
plicity [4], [10], [11]. In [8] the authors also found that it was
more robust than other classification techniques. Therefore,
here we use the LDA to design the classifier.

Given an observation vector x, the Bayesian decision rule
shows that p(ωi|x), the posterior probability that x belongs
to class ωi, is defined as [9]:

p(ωi|x) =
p(x|ωi)p(ωi)

p(x)
(1)

where p(x|ωi) is the conditional probability density of the
observation x from class ωi, p(ωi) is the prior probability of
class ωi and p(x) is the unconditional probability density of
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the observation x. The Bayesian decision theory determines
the class label for a measure x by choosing the class ωi which
produces the maximum posterior probability p(ωi|x), from
i = 1: C. Because the unconditional probability density is
common for all classes, it can be omitted. The discriminant
function can be written as:

gi(x) = p(x|ωi)p(ωi). (2)

The general assumption is that the conditional probability
density for each class is Gaussian and can be represented as
the multivariate normal distribution:

p(x|ωi) =
1

(2π)d/2|Σi|1/2
exp{−1

2
(x− µi)

T Σ−1
i (x− µi)} (3)

where d is vector dimension of x, and µi and Σi are the
mean vector and covariance matrix for class i respectively.

Assuming that the class data are homoscedastic, the term
Σi in equation (3) can be replaced by the pooled sample
covariance matrix:

Σ =

C∑
i=1

ni − 1

N − C
Σi. (4)

And then, taking the natural log of the discriminant function
in equation (2) and removing constants without loss of infor-
mation, after some manipulation, we obtain the discriminant
function as:

gi(x) = µTi Σ−1x− 1

2
µTi Σ−1µi + ln p(ωi). (5)

Obviously, it is a linear function. That is why this kind of
classification technique is called as LDA. In sEMG pattern
recognition, generally the number of training samples for all
class is the same and the prior probability for each class is
assumed to be equal. Therefore, the term ln p(ωi) can be
omitted and the pooled sample covariance matrix Σ can be
calculated as the equal weighted average of the covariance
matrices across all classes.

B. Mixed-LDA

From the description in Section II-A, we know that the
model of LDA for sEMG pattern recognition is determined
by the parameters, mean vector and covariance matrix of
each class. Suppose there have been S pre-trained mod-
els stored in memory, which are trained on data acquired
from S prior days. These models can be represented as
(µ̂ji , Σ̂

j
i ), i = 1: C; j = 1: S. In the new (current) day,

we can integrate these prior models into the training process
due to their consistence with the current data to some extent.
The framework of such integration method is formulated as:

µi = (1− r)µi + r

S∑
j=1

ωji µ̂
j
i (6)

Σi = (1− r)Σi + r

S∑
j=1

ωji Σ̂
j
i (7)

where µi and Σi are the mean vector and covariance matrix
of class i estimated on the incoming training samples of the

Fig. 1. Experiment procedure for each subject was presented. Each of
thirteen motion classes was performed once in each trial; twenty trials were
accomplished in each day. Experiment lasted for ten days. Twelve active
motions were visible here, which were wrist flexion, wrist extension, radial
deviation, ulnar deviation, pronation, supination, fist, open hand, fine pinch,
key grip, ball grasp and cylinder grasp.

current day; ωji is the weight determining how much the
model of jth day could be reused for class i. From equation
(6) and equation (7), we see that the anticipated model is the
combination of the current model and the weighted sum of
prior models through a trade-off parameter, r. Therefore, we
denote the method proposed as Mixed-LDA.

Here, the weight, ωji , is computed as the inverse proportion
to the Mahalanobis distance from the centroid of current
model to that of jth prior model for class i. That is:

ωji =

1

D(µi,µ̂
j
i ,Σ̂

j
i )∑S

j=1
1

D(µi,µ̂
j
i ,Σ̂

j
i )

(8)

where D(µi, µ̂
j
i , Σ̂

j
i ) is defined as:

D(µi, µ̂
j
i , Σ̂

j
i ) = (µi − µ̂

j
i )
T (Σ̂ji )

−1(µi − µ̂
j
i ). (9)

We use this metric to quantify the consistence between the
prior models and the current data. Larger D(µi, µ̂

j
i , Σ̂

j
i )

means less consistence and results in less weight, ωji .
For the trade-off parameter r, we will compare the clas-

sification performances for different values and choose the
preferable one which obtains the best results.

C. Experimental Protocol

Five healthy, intact-limbed subjects, who have signed
the informed consent, participated in this experiment. The
experiment procedures conformed to the Declaration of
Helsinki. Before the experiment, the forearm skin of the
subject was rubbed with alcohol to provide good condition
for sEMG signals acquisition. Four wireless sEMG sensors
with bipolar configuration (Delsys INC, USA) were placed
on the extensor carpi ulnaris (ECU), flexor carpi radialis
(FCR), extensor carpi radialis longus (ECRL) and flexor
carpi ulnaris (FCU) respectively. These four muscles were
chosen because they were highly related to human wrist
and hand motions. After the initial calibration, the sensors
positions were marked to help reestablish the experimental
setup on the following days.
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Fig. 2. Comparison of average classification accuracy with few training
samples when different values of trade-off parameter are used. Results
are obtained by averaging across all subjects and days. MLDA represents
Mixed-LDA.

The sEMG signals of thirteen motion classes were collect-
ed in the experiment. These motion classes are (m1) wrist
flexion, (m2) wrist extension, (m3) radial deviation, (m4)
ulnar deviation, (m5) pronation, (m6) supination, (m7) fist,
(m8) open hand, (m9) fine pinch, (m10) key grip, (m11) ball
grasp, (m12) cylinder grasp and (m13) "no motion". The
subjects stood before the computer and naturally extended
their arms toward the ground with palms facing inward in the
preparatory stage. And then, they were instructed to perform
motions with a consistent level of effort. Each motion was
sustained for 5 seconds and subjects had a 5 seconds rest
between subsequent motions to avoid fatigue. Every motion
needed to be performed once in one trial. For each subject,
there were totally 20 trials per day and the time interval
between experiments of two subsequent days was kept about
24 hours. The entire experiment lasted as long as ten days to
simulate the scenario of long-term use of MP. Fig. 1 depicted
the whole experiment procedure.

We used a commercial wireless biological signal ac-
quisition system, TrignoTM Wireless system (Delsys INC,
USA), to record the sEMG signals. The sEMG signals were
band-pass filtered (20–450Hz) by hardware and sampled at
2 KHz. All data were stored and analyzed offline using
MATLAB (Mathworks, Inc.) in a 2.5GHz Intel Core Quad
CPU computer.

D. Data Preprocessing and Preparation

The central 4 seconds part of each 5 seconds contraction
data are used to analysis in order to remove the transient
state of the contraction. Afterwards, the usable data are
segmented into a series of 200 ms windows with 50%
overlap. sEMG features are extracted in each window. The
six order AR coefficients are used [2], [12]; hence, one
sample in the classification stage is a feature vector with
dimension 24 (6 coefficients per channel × 4 channels). After
this preprocessing, in each trial 39 samples per motion class
are obtained; that is, 780 samples per motion class for one
subject are obtained in one day.

As mentioned in Section II-C, we have 10 days experiment

Fig. 3. Comparison of average classification accuracy with few training
samples between LDA and Mixed-LDA. Results are obtained by averaging
across all subjects and days.

data recordings for each subject. Out of these 10 days data,
9 days data are used to trained 9 models off-line, which
are regraded as the S pre-trained models stored in memory.
The remaining day is regraded as the new (current) day.
We repeat this process 10 times to obtain 10 results similar
to 10×10 cross-validation for each subject. The average
classification accuracy across all motion classes is employed
as the measure of performance.

III. RESULTS

A. Classification Accuracy with Few Training samples

In each current (new) day, 20 successive training steps are
considered. At the kth step, the number of available training
samples per class is 4k. The test is implemented over all the
remaining samples (780−4k samples per class).

1) Choosing Trade-off Parameter r: The trade-off pa-
rameter is set between 0.1 to 0.9, with tolerance of 0.2.
The comparison between the classification performances of
different r is illustrated in Fig. 2. At each training step,
the classification rate of one curve is averaged across 50
results (5 subjects, 10 results for each subject). MLDA
represents Mixed-LDA proposed. From Fig. 2, when the
training samples are scarce, greater value of r (the weighted
sum of prior models contributes more for the anticipated
model) generally attains better results except for r = 0.9.
On the other hand, as the increase of training samples,
excessively great r can compromise the performance. We
can see that the MLDA with r = 0.5 achieves a good
balance despite the number of training samples. Basically,
its performance is good at all training steps; therefore, the
trade-off parameter r here should be chosen as 0.5.

2) Boosting Training with Mixed-LDA: Fig. 3 reports the
comparison between classification performances of LDA and
Mixed-LDA. LDA means the model whose parameters are
estimated merely on the incoming training data; that is, the
trade-off parameter r in equation (6) and (7) is equal to
0. This training strategy can be regarded as a non-adapted
method which has been used in many previous studies.
Mixed-LDA (r = 0.5) is the training strategy proposed in
this study, which can be regarded as an adapted method.
As showed in Fig. 3, Mixed-LDA outperforms LDA at each
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Fig. 4. Comparison of average classification accuracy with more training
samples between LDA and Mixed-LDA. Results are obtained by averaging
across all subjects and days.

training step. The advantage of Mixed-LDA is extremely
evident when few training samples are used; however the ad-
vantage reduces as the number of training samples increases.
Mixed-LDA surpasses LDA in classification rate of at least
6% when the training samples are not more than 260; at least
5% for 260-520 training samples; at least 2% for 520-1040
training samples.

B. Classification Accuracy with More Training samples

In the current (new) day, 10 successive training steps are
considered. At the kth step, the available training samples
are from k trials data; i.e., the number of training samples
per class is 39k. The remaining samples are used for test. As
we can see in Fig. 4, as more and more training samples are
used, the superiority of Mixed-LDA (r = 0.5) comparing with
LDA becomes diminishing. The Mixed-LDA even becomes
inferior to LDA when more than 7 trials data are adopted to
training.

IV. DISCUSSION AND CONCLUSION

In this study we try to proportionally reuse the model-
s trained on prior days to boost the training process of
the new day for the long-term use of MP. Generally, the
proposed method, Mixed-LDA, outperforms the baseline
method, LDA, when few samples are used for training. For
example, Mixed-LDA obtains average 88.74% classification
rate using 104 training samples, which is similar to LDA
with 988 training samples (88.69%). This indicates that the
Mixed-LDA can be trained approximately 9 times faster than
LDA. For another aspect, when more and more samples are
employed to training, the advantage of Mixed-LDA becomes
vanishing. However, the topic in this study is how to achieve
an acceptable outcome using training samples as few as
possible. The results show that the method proposed gives a
possible way to realize this goal.

In [10] the authors proposed a self-enhancing approach
based on LDA for improving myoelectric pattern recognition,
which performed adaptation during the prediction stage.
Meanwhile, the study here defines a way to boost the
performance in the training, i.e., before the beginning of

prediction. It is possible to obtain an ameliorate version via
the combination of these two methods.

One limitation of the proposed method is that we deter-
mine the weight, ωji , and the trade-off parameter r heuristi-
cally. Especially for the trade-off parameter r, we choose
it by trial-and-error and finally fix it at 0.5. This gives
an explanation to the phenomenon observed in Fig. 4: the
performance of Mixed-LDA becomes inferior to that of LDA
when more than 7 trials data are adopted to training. We can
image that as the number of training samples increases, the
model trained on the incoming training data becomes more
reliable for the following testing data than the prior models;
therefore, the trade-off parameter r should decrease. In the
future, we plan to find an optimization method which can
compute the trade-off parameter automatically.
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