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Abstract— Contemporary physiotherapy and rehabilitation
practice uses subjective measures for motion evaluation and
requires time-consuming supervision. Algorithms that can ac-
curately segment patient movement would provide valuable
data for progress tracking and on-line patient feedback. In
this paper, we propose a two-class classifier approach to label
each data point in the patient movement data as either a
segment point or a non-segment point. The proposed technique
was applied to 20 healthy subjects performing lower body
rehabilitation exercises, and achieves a segmentation accuracy
of 82%.

I. INTRODUCTION

To assist physiotherapy assessment and diagnosis, body
worn sensors can be used to measure human movement [1].
When continuous data of patient movement is collected,
the exercise data needs to be segmented to isolate when
a patient begins and ends each exercise repetition. These
segments can be used to extract useful metrics like mean
velocity, range of motion, or the timed-up and go [2],
allowing physiotherapists to assess their patient’s progress
quantitatively, and to provide patient feedback.

Motion segmentation, the process of locating the start
and end locations of the movements of interest, is difficult
due to: (1) large dimensionality of the time-series data
[3], and (2) intra- and inter-personal spatial and temporal
variability between patient movements due to stature, fitness
and health conditions. For rehabilitation supervisory systems,
the algorithm should also be on-line, in order to provide real-
time feedback to the patient.

Numerous techniques have been proposed for motion
segmentation. A common approach is to use zero-crossings
and thresholds that characterize joint trajectory direction
change as segment points, e.g. velocity crossings [4], joint
acceleration [5] or linear acceleration [6]. However, these
algorithms tend to over-segment.

Alternatively, the movement data can be modelled explic-
itly, e.g. via piecewise linear approximation [7]. Segments
are declared when one linear segment ends and the next one
begins. However, this method requires careful tuning of the
regression error to prevent over-fitting.

Dynamic Time Warping (DTW) [8] has also been em-
ployed, where the temporal variations between the template
and observation data are removed by warping the time
scale of the observation to the template. Although dynamic
time warping can accurately segment observation data with
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significant temporal variations from the template, it does not
scale well to higher dimensions, and cannot be used on-line.

The Hidden Markov Model (HMM) [9] can also be used
to model movement data. Researchers have used the HMM
to model key poses as states in movement templates [10], and
segment when the windowed observation data is sufficiently
similar to the templates. Alternatively, each state of the
HMM can be used to describe a movement primitive [11],
and segments are declared on state transition.

Classification techniques such as the Support Vector Ma-
chine (SVM) [12] have also been considered. Several differ-
ent SVMs can be trained to identify data as belonging to a
particular class, and segment when the label changes [13].
Decision trees [14], k-Nearest Neighbour (k-NN) [15] and
Artificial Neural Networks (ANN) [16] have all been used
in a similar fashion. However, these approaches perform seg-
mentation only when one motion type transitions to another,
exercise supervision algorithms also require the ability to
segment when the same action is performed multiple times.

This paper proposes an on-line segmentation algorithm
that can segment between different movement primitives,
as well as repetitions of the same primitive, by classifying
individual data points as a segment point (p1) or a non-
segment point (p0). The proposed method is appealing as
this converts the difficult temporal segmentation task into
an easier classification task. Once segment points are deter-
mined, additional classification can be done to identify the
underlying motions.

II. PROPOSED APPROACH

This paper describes a method to utilize classifiers to
discriminate between p1 and p0 points at each time point.
However, using classifiers in this manner to perform seg-
mentation is not trivial, and gives rise to several issues
unique to classifier algorithms. Unlike the HMM or the DTW
algorithms, classifiers do not inherently consider temporal
information, which is an important aspect to movement data.

Appropriate generation of p1 points is also important.
Classifiers require training prior to use, so labelled data
is needed a priori. Manually labelled segments typically
specify a single time point to denote the start and the end
of a given exemplar, which is not suitable for classifiers, as
there is minimum difference between the data point at time
tn and at time tn±1.

Lastly, unbalanced datasets are also a concern. For exam-
ple, in a given set of exercise data, there are only a small
number of p1 points compared to p0 points.
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A. Model Training
A classifier requires sample data, named motion exem-

plars, in order to extract the characteristics of p1 required for
segmentation. The exemplars consist of annotated segment
boundaries of each exercise repetition. The motion data can
be measured by a sensor system, such as inertial measure-
ment units (IMUs) [6], [10], and annotated by experts via
video playback [11], [10].

Using these training exemplars, the classifier constructs a
model or template to differentiate between p1 and p0. This
section describes the components of the training process.

1) Normalization: The exemplar data are normalized to
reduce the impact of the inter- and intra-participant variabil-
ity, by subtracting the initial value from the data.

2) Manual Segment Point Expansion: In order to increase
the number of segment training points (and decrease data
imbalance) and include points very similar to the segment
point in the segment exemplar set, an additional nexp points
before and after each manually labelled segment point are
denoted as p1. In addition, the data points between the end
of one segment and the start of the next are all labelled as
p1. This assumes that points when the demonstrator is at
rest between motions are also considered segment points,
and allows for additional training data points to be added
that share similar characteristics as the manual p1 points.

3) Outlier Rejection: The quality of the training data
is checked by examining its velocity, in order to remove
velocity spikes. In a given exemplar, the peak velocity for
each continuous segment and non-segment block is deter-
mined, and clustered by k-means, where k = 2. If the higher
cluster in the k-means contains only one or two peaks, the
segments containing these velocity spikes are removed from
consideration for training. Data between t1 and the start of
the first segment is also rejected from the training data,
to remove any noise due to data collection initialization.
The joint angles examined are determined by calculating
the variance of the exemplar, over the whole dataset, and
selecting the joint angle that varies the most.

In addition, any segment and non-segment block that has
velocities above some threshold is also removed from the
training data, in case numerous peaks exists in a given block,
and the k-means method did not reject the velocity spikes.
This threshold would be tuned to the dataset.

4) Input Vector Stacking: Classifier techniques do not
typically consider temporal factors. Although the input vector
could include data with temporal information, such as joint
velocity, additional temporal data may be required to ade-
quately capture the temporal nature of the movement data.
To consider short term temporal effects, the input vector
is stacked, so that a given data point includes data from a
few time steps before and after the current data point. That
is, tuse = [tn−nstack

· · · tn−1, tn, tn+1 · · · tn+nstack
]. nstack

requires tuning to optimize for the data.
5) Downsampling: In a given dataset, there will be sig-

nificantly more p0 than p1 points. To reduce the impact of
unbalanced data, two layers of downsampling are employed.
(1) The number of p1 and p0 for each exemplar are noted,

Fig. 1. Knee extension training data. The red points at y = 0 denote
the training data selected for p0, sampled by Gaussian resampling, favoring
non-segment points closer to the boundary. The red points at y = 0.5 denote
the training data selected for p1, which has no downsampling.

and the smallest values are denoted as p1min and p0min ,
respectively. Each exemplar is randomly downsampled to
match p1min

and p0min
, to eliminate the unbalanced dataset.

(2) The full training data is resampled to make sure it
does not exceed a limit of 7500 data points for either p1
or p0, as the installation of MATLAB used is unable to
create arrays larger than 75002, which is required for certain
classifiers. For p1, it is randomly resampled. For p0, Gaussian
resampling is used to favour p0 points close to existing p1.
See Figure 1 for an illustration.

6) Segmentation Classifier Training: After the above
steps, the individual exemplar features are concatenated
into a data matrix, and passed into a three-stage training
process, consisting of a dimensionality reduction algorithm,
a base classifier, and an aggregator. Common approaches to
classification involve either utilizing dimensionality reduc-
tion or feature selection, then using a simple classifier, or
forgoing any dimensional alternation and using a powerful
classifier instead. The different combinations of these three
components are compared:

1) Dimensionality reduction
• No transformation applied
• Principal Component Analysis [17] (PCA)
• Fisher’s Discriminate Analysis [17] (FDA)

2) Classifier
• k-Nearest Neighbour [17] (k-NN)
• Quadratic Discriminate Analysis [17] (QDA)
• Radial Basis Function [18] (RDF)
• Support Vector Machine [12] (SVM)
• Artificial Neural Networks [19] (ANN)

3) Aggregation
• No aggregation algorithm
• Boosting [20]
• Bagging [21]

B. Novel Data Classification

To classify, each set of observation data is processed in
a similar fashion as the training data. The input vector is
normalized by subtracting the initial value, then stacked with
data points from before and after the time point itself. If a
dimensionality reduction algorithm is used, it is then applied
to the processed observation data before classification begins.
If nstack data stacking occurred, then time points t1 to
tnstack

and tn−nstack
to tn cannot be classified since not
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enough data is available to be stacked, and thus are excluded
from the classification effort. Unlike the training data, no
downsampling or noise rejection procedure is applied to the
observation data. For verification, the ground truth p1 points
are expanded by nexp.

To compare the proposed approach to temporal methods,
each cluster of p1 points is converted into a single temporal
segment point by clustering the segment and non-segment
points. Clusters shorter than nexp in length are removed.
Each cluster is then converted into an ending point for the
nth segment, and a starting point for the n+ 1th segment.
These segment points are declared nexp from the two edges
of the cluster, or one-third of the length of the cluster, if the
cluster is shorter than nexp in length.

III. EXPERIMENTS

A. Motion Database

The algorithm was tested with a database of 20 healthy
participants performing 20 repetitions of 5 rehabilitation
motion types each. On average, each repetition took 3
seconds to complete. The exercises performed were: knee
extension while seated, sit to stand, squats, knee/hip flexion
while supine and hip extension while supine. The data was
collected via 3 Shimmer IMU sensors [22], transmitting at
128 Hz. The IMU data was used to compute joint angles
via an Extended Kalman Filter (EKF) [1]; the joint angles
were used as the input features for classification. The input
feature vector for the classifier consisted of the joint positions
and velocities for each time step and the joint positions
and velocities at the previous and subsequent 15 timesteps.
For this dataset, manual segments of the exercises were
generated and labelled by an expert watching the motion
in video playback of motion capture data that was collected
simultaneously.

All processing and algorithm implementation were done
in MATLAB 8.0. All analysis was performed in MATLAB,
along with the libsvm Toolbox [23], the Toolbox for Dimen-
sionality Reduction [24], the Bayes Net Toolbox [25], and
the ReBEL toolkit [26].

B. Algorithm Implementation Details

For a majority of the algorithms examined, standard
configurations were used, and the tuning parameters are
examined in Section III-D.

For the PCA and the FDA, the optimal number of principal
components (PCs) was determined dynamically, via the
elbow approach. The elbow is determined by ordering the
fraction of total variance in the data represented by each
principal component, then selecting the top k components
that contain some amount of variance. This threshold was set
to 80%. The k determined by the elbow method is reported.
Alternatively, k can be manually tuned.

Soft-margin SVM was used to account for poor separabil-
ity in the data. A feedforward ANN was examined for the
purposes of this paper.

For boosting, the AdaBoost [20] is employed. However,
the AdaBoost algorithm is formulated to work with classifiers

that can accept weighted data points, which does not apply
to all classifiers. Instead, a resampling scheme, based on the
data weights, is employed [27].

C. Verification

To calculate the segmentation accuracy, each point in the
observation is labelled p1 or p0. The number of correctly
identified segment points, the true positives (TP), as well
as all false positives (FP) and false negatives (FN), are
aggregated together and reported as the F1Seg

score, which
represents a measure that aggregates both precision and recall
accuracy. The p0 points are not considered for the F1Seg

as
the larger volume of the p0 points may obscure the true
segmentation accuracy of the model. The F1Seg

score is
calculated as follows:

F1Seg
=

2 · TP
2 · TP + FN + FP

The overall classification accuracy, including both segment
and non-segment points, can be assessed by incorporating the
number of true negatives (TN) into the F1 score. Here, the p0
points are included in the calculations to assess the labelling
accuracy within and between each of the primitive segment
points. The F1Class

score is calculated as follows:

F1Class
=

2 · (TP + TN)

2 · (TP + TN) + FN + FP

For the temporal segment points, an algorithmic segment
point is declared as TP if it is within some terr of a manual
segment point. If multiple segment points appear within the
terr of the same manual point, the extra points are declared as
FP. If algorithmic segment points are declared outside of the
terr range of any manual segment point, it is also declared a
FP. If no algorithmic segment points appear within the terr
of a manual segment point, it is declared a FN.

D. Test Parameters

Both the joint angle and the joint velocity are chosen
to be part of the dataset in order to incorporate temporal
information in the segmentation process. Preliminary testing
showed that a high nstack results in higher computation time,
and is set to 15 to balance between runtime and accuracy.
nexp selection was more difficult, as it changes the number
of manual p1 points, thus altering the ground truth data. The
higher nexp, the more p1 training points became available.
For comparison to existing work, nexp was set to 25, which
corresponds to 0.2 seconds [10].

Input data summary:
• Input datatype: Joint angle q and joint velocity q̇
• Manual segment point expansion: nexp = [25]
• Input vector stacking: nstack = [15]

Dimensionality reduction algorithm:
• No dimensionality reduction
• PCA and FDA: PCs set by elbow at 80% or set to 2
Classifier algorithm:
• k-NN: k = [3, 9]
• RBF: number of RBFs used, nRBF = [10, 20]
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Fig. 2. Segmented knee extension motion. Points at around the y = 0 area
are manual (red) and algorithmic (blue) points denoted as p0, while points
at around y = 0.5 are p1 points.

• SVM: kernel function used, linear, polynomial, radial
• ANN: layers and neuron count, nlayers =

[10, 10], [10, 10, 10], [20, 20, 20]

Aggregator algorithm:
• No aggregator
• Boosting: iteration count niter = [3, 5]
• Bagging: iteration count niter = [3, 5]

E. Experimental Configurations

Two different configurations were tested:
1) Segmentation Using Individualized Templates: Tem-

plates were generated from all 5 motions from a single
subject, and tested on another set of the same motions from
the same participant, to evaluate robustness against intra-
subject variations. Data from all was used in this test.

2) Segmentation Using Generalized Templates: Templates
were generated from all 5 motions from 5 different subjects,
and tested on another set of 5 participants, to evaluate ro-
bustness against inter-subject variability. The training-testing
sets were rotated through the 20 subjects, for a 4-fold cross-
validation.

IV. RESULTS

Table I shows the results of the individualized templates.
Table II shows the results for the generalized templates.
Figure 2 shows an example of the segmentation. The rank
order in the tables was determined based on the F1Seg

score
of the generalized templates, and was used for both tables.

Overwhelmingly, the top performing classifiers utilize
PCA. Using the elbow method, PCA selects between 30
to 40 dimensions to represent 80% of the total variability,
confirming that the data is redundant and correlated, so that
a lower dimensionality feature vector can be used.

The classifiers that reported the highest F1Seg
were the

SVM, the ANN and the k-NN. These classifiers provided
high accuracy in both the individualized template and the
generalized template tests, suggesting that these classifiers
are suitable for both intra- and inter-subject segmentation.
The high processing costs of k-NN makes it unsuitable for
on-line applications, however.

The tables show that aggregated techniques do not improve
segmentation accuracy, as the top 10 classifiers include both

non-aggregated and aggregated variants. Note that some
aggregation is already performed by the sampling technique,
which preferably selects non-segment points closer to the
segmentation boundary for training. These results suggest
that the training data sampling scheme is sufficient, since the
sampling scheme emphasizes the p0 points close to the p1,
which are likely to have a higher chance of misclassification.

The misclassifications in the classifiers generally stem
from the tendency of the classifiers to over-declare p1 points,
leading to a high FP score.

Individualized templates reports higher accuracy than gen-
eralized templates, in both classifier and temporal F1, under-
scoring that intra-subject variability is easier to handle than
inter-subject variability.

The temporal accuracy is lower than the classifier accu-
racy, and is due to the temporal localization component. The
simple conversion approach used generates algorithmic seg-
ments that are wider or narrower than the manual segments,
thus leading to a poorer result, even though the algorithmic
segments approximately overlap the manual segments. The
improved performance between terr = 0.2s and 0.3s shows
that many algorithmic segments sit just outside the boundary
of the manual segments, and are flagged as FN instead of TP.
In several instances, the manual segments are delayed due
to the reaction speed in the expert performing the labelling,
and the segments suggested by the algorithm may be more
suitable to denote the actual location of the segment.

The proposed approach outperforms prior work [10], par-
ticularly for individualized templates. At terr = 0.2s, for
individualized templates, the proposed algorithm reports a
top temporal F1 score of 92%, compared to a F1 score
of 85% in [10]. For generalized templates, the proposed
algorithm reports a top temporal F1 score of 80%, compared
to a F1 score of 84% from the prior work [10]. The two
approaches achieve similar performance at terr = 0.3s, 93%
and 95%, respectively. The proposed algorithm requires less
parameter tuning and does not require velocity crossings [10]
to occur at all segment points, making it easier to deploy, and
apply to a wider number of exercises.

V. CONCLUSION

Time-series segmentation can be reformulated as a two-
class classification problem. Using PCA SVM, a dataset
consisting of 20 healthy subjects performing 5 rehabilitation
exercises was segmented with a F1 score of 88% when
individualized templates are used, and a F1 score of 82%
when generalized templates are used. ANN and k-NN also
perform well, but k-NN suffers from long run-time.

For future work, movements from rehabilitation subjects
will be examined, to verify the generalizability of the pro-
posed algorithm to the target population.
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TABLE I
SEGMENTATION RESULTS USING INDIVIDUALIZED TEMPLATES, WHERE THE INPUT VECTOR CONSISTS OF q AND q̇, nexp = 25 AND nstack = 15.

THE F1 ACCURACY FOR TRAINING AND TESTING RESULTS ARE REPORTED. FOR BREVITY, ONLY THE TOP 10 RESULTS IS REPORTED. THE TRAINING

TIME ACCOUNTS FOR CLASSIFIER TRAINING TIME, WHILE THE TESTING TIME ACCOUNTS FOR CLASSIFICATION TIME.

Classifier Parameter Training Testing Temporal F1 Time [s]
Dim Reduct Classifier Aggregator F1Seg F1Class

F1Seg F1Class
terr = 0.2s terr = 0.3s Training Testing

1 PCA SVM, radial None 97% 99% 88% 97% 92% 95% 183 114
2 PCA SVM, radial Bagging, 5 96% 98% 88% 97% 92% 95% 217 141
3 PCA SVM, radial Bagging, 3 96% 98% 88% 97% 91% 95% 290 143
4 PCA SVM, radial Boosting, 5 96% 98% 88% 97% 92% 95% 225 107
5 PCA ANN, 10-10-10 Bagging, 5 99% 100% 81% 95% 79% 85% 2031 87
6 PCA ANN, 20-20-20 Bagging, 5 100% 100% 82% 95% 80% 86% 10257 94
7 PCA SVM, radial Boosting, 3 96% 98% 88% 97% 92% 95% 149 62
8 PCA ANN, 10-10 Bagging, 5 99% 100% 81% 95% 78% 85% 10965 114
9 PCA ANN, 10-10 Bagging, 3 99% 100% 80% 95% 76% 83% 6675 91

10 PCA k-NN, 9 Bagging, 5 98% 99% 88% 97% 91% 96% 8536 8741

TABLE II
SEGMENTATION RESULTS USING GENERALIZED TEMPLATES, WHERE THE INPUT VECTOR CONSISTS OF q AND q̇, nexp = 25 AND nstack = 15. THE

F1 ACCURACY FOR TRAINING AND TESTING RESULTS ARE REPORTED. FOR BREVITY, ONLY THE TOP 10 RESULTS IS REPORTED. THE TRAINING TIME

ACCOUNTS FOR CLASSIFIER TRAINING TIME, WHILE THE TESTING TIME ACCOUNTS FOR CLASSIFICATION TIME.

Classifier Parameter Training Testing Temporal F1 Time [s]
Dim Reduct Classifier Aggregator F1Seg F1Class

F1Seg F1Class
terr = 0.2s terr = 0.3s Training Testing

1 PCA SVM, radial None 94% 97% 82% 95% 80% 87% 98 406
2 PCA SVM, radial Bagging, 5 94% 97% 82% 95% 79% 87% 445 1559
3 PCA SVM, radial Bagging, 3 94% 97% 81% 95% 79% 87% 274 972
4 PCA SVM, radial Boosting, 5 94% 97% 81% 95% 78% 86% 421 1521
5 PCA ANN, 10-10-10 Bagging, 5 95% 97% 81% 95% 80% 88% 1564 185
6 PCA ANN, 20-20-20 Bagging, 5 96% 98% 80% 94% 77% 86% 5452 202
7 PCA SVM, radial Boosting, 3 94% 97% 82% 95% 78% 87% 764 2259
8 PCA ANN, 10-10 Bagging, 5 94% 97% 82% 95% 80% 88% 1653 173
9 PCA ANN, 10-10 Bagging, 3 93% 96% 81% 95% 79% 87% 958 149

10 PCA k-NN, 9 Bagging, 5 94% 97% 81% 94% 78% 85% 3175 23974
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