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Abstract— This study developed a method of discriminating 

real-time motion from electromyogram (EMG) signals. We 

previously proposed a real-time motion discrimination method 

using hyper-sphere models that discriminated five motions (open, 

grasp, pinching, wrist extension, and wrist flexion) above 90% 

and quickly learned EMG signals. Our method prevents elbow 

motions from interfering with hand motion discrimination. 

However, we presume in our method that feature quantities do 

not change with time. Discrimination accuracy might deteriorate 

over time. Additionally, our method only discriminated three 

motions (open, grasp, pinching) for finger motions. This paper 

proposes the effectiveness of our method for changing feature 

quantities caused by time variation and a real-time motion 

discrimination method using new hyper-sphere models for four 

finger motions (open, grasp, pinching, and 2-5th finger flexion). 

We carried out two experiments and verified the effectiveness of 

our method for changing feature quantities and four finger 

motions discrimination using the new hyper-sphere models. 

I. INTRODUCTION 

Since hands and fingers shape most of our intellectual 

activities, they play various, critical roles in our daily lives. 

Many forearm amputees use prosthetic hands for many 

different purposes. Myoelectric prosthetic hands, which use 

electromyogram (EMG) signals in the persisting muscles as 

operation signals, are attracting attention because they 

resemble cosmetic prosthetic hands and can be naturally 

operated. Presently, the development of a motion 

discrimination method that can achieve intuitive operation and 

increase the number of discrimination motions is required to 

increase the level of effectiveness of the daily life of forearm 

amputees. Thus, methods have been studied that learn the 

relationships between patterns of EMG signals measured from 

muscles and classifier motions and estimate the motions that 

amputees want [1]-[4].  

Many researchers have studied discrimination methods. 

Artificial neural networks have been used because they 

consider the nonlinearity of EMG signals, and the number of 

motions to be discriminated is increased. However, these 
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methods take a long time to learn the EMG signals, and elbow 

motions interfere with their discriminated motions. In 

previous research, we devised a real-time motion 

discrimination method using hyper-sphere models that can 

learn EMG signals quickly. Moreover, the elbow motions did 

not interfere with the hand motions [5]. 

In this paper, we verify the effectiveness of our method for 

changing the feature quantities caused by time variation. Our 

method determines a feature space formed by feature 

extraction and classifiers (hyper-sphere models). The feature 

quantities change over time because the EMG signals change 

due to the time variations caused by fatigue, sweat, or 

electrode displacement, for example. We presume in our 

method that feature quantities do not change with time. 

However, discrimination accuracy might deteriorate over time 

because our method carries out motion discrimination using 

the parameters obtained by the initial learning for many hours. 

If myoelectric prosthetic hands are controlled by our method, 

errors might endanger the user. Many researchers have studied 

discrimination methods by considering time variation [6]-[9]. 

We also pursue a motion discrimination method by 

considering time variation. We carried out experiment and 

verified the effectiveness of our method for changing feature 

quantities. 

Furthermore, this paper proposes a real-time motion 

discrimination method using new hyper-sphere models for 

four finger motions (open, grasp, pinching, and 2-5th finger 

flexion). In previous research, our method only discriminated 

three motions (open, grasp, pinching) for the finger motions. 

The number of tasks that can be done by the amputees is raised 

by increasing the number of discriminated finger motions. We 

carried out experiment and verified the effectiveness of our 

method using new hyper-sphere models for four finger motion 

discrimination. 

II. MOTION DISCRIMINATION 

Fig. 1 shows our motion discrimination system, which 

consists of the following parts: processing (high-pass filter, 

notch filter, rectification, and moving average), feature 

extraction (quadratic polynomials), and discriminators 

(hyper-sphere models). Quadratic polynomials are used to 

extract the features of the discriminated motions from the 

processed EMG signals to increase the discrimination 

accuracy. The hyper-sphere models discriminate finger 

motions using the extracted features.  

Our method uses the size of the EMG signals measured 

from the channels. For example, Fig. 2 shows the trajectories 

of the EMG signals of two motions around the axis of the size 
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of EMG signals measured from two channels. The trajectories 

start near the origin and return to this point because the EMG 

signals are weak when the muscles do not contract but 

strengthen when they do. Fig. 2 shows the decision region of 

the hyper-sphere models that are discriminators. 

 

 

 

 

 
Figure 1.  Motion Discrimination System 

 

 

 

 

 

 

 
Figure 2.  Decision Regions of Hyper-Sphere Models 

A.  Feature Extraction 

As shown in Fig. 3, since the decision regions become 

smaller for motions with similar trajectories around the axis of 

the size of EMG signals, it is difficult to use the EMG signals 

obtained by pre-processing. Therefore, quadratic polynomials 

are used to project the trajectories of the motions into a feature 

space that has large enough decision regions. 
 

 

 

 

 

 

 
Figure 3.  Examples of Decision Regions   

 

1) Quadratic Polynomials: Quadratic polynomials are used 

to extract a feature of each discriminated motion from the 

EMG signals. The feature corresponding to a motion takes on 

the biggest value when the motion is performed. Quadratic 

polynomials are used for every motion model.  

Feature fqi corresponding to motion i is expressed by the 

amplitudes of the EMG signals that are full-wave rectified and 

smoothed after being measured from L channels: 

                                                                              

                                                                      ,         

where a, b, and c are coefficients, which are determined by 

the least squares method and a target signal that is generated 

by the method described below. 

2) Generation of Teaching Signals: A teaching signal is 

needed when determining the coefficients with the least 

squares method. Teaching signal tsn is generated as follows. 

Each motion is performed once, and sum S of the EMG signals 

of each channel is calculated. We assume L channels of EMG 

signals and N motions are performed: 

 

                          .                                         

Since an EMG signal produces a peak whenever a motion is 

performed, S produces N peaks. The n-th peak corresponds to 

the n-th motion. The teaching signal corresponding to motion 

n is calculated as follows: 

 

                             , 

where i (i = 1, …, n, …, N) is the number of peaks, d is a 

coefficient that takes a value between 0 to 1, and e is the 

threshold value of S. The target signal is 0 when S is below e. 

It reaches a maximum when a corresponding motion is 

performed. Because the EMG signals can be measured and the 

teaching signals can be calculated in real time, the coefficients 

can be updated without using any learning time. 

B. Hyper-Sphere Model 

Fig. 2 and Fig. 3 show the decision region of the 

hyper-sphere models that are discriminators. It is located in 

such a way as to wrap around a trajectory corresponding to 

motions i and j. Because the trajectories that correspond to the 

elbow motions are far from the trajectories of the 

discriminated motions, the hyper-sphere models prevent 

incorrect discrimination of the elbow motions. The 

hyper-sphere models generate signals with a positive value 

when a certain motion for discrimination is performed and the 

feature trajectory (Fig. 3) enters the hyper-sphere for 

discriminating the motion and zero when other motions for 

discrimination and elbow motions are performed. These 

signals are called motion signals. Our method can 

discriminate many motions by studying the size of EMG 

signals in the multidimensional space. A hyper-sphere model 

is composed for each motion. A motion signal corresponding 

to motion i is expressed as 

 

                                                                      ,              

where cij = (ci, , …,cin , …, ciN) is the center vector of the 

hyper sphere, rij is the radius of the hyper sphere, s= (s1, …,sn , 

…, sN) is the center vector of the first hyper sphere, and J is the 

number of hyper-spheres. The discrimination result is the 

motion that corresponds to the motion signal with the largest 

positive value.  

C. Real-Time Motion Discrimination using Hyper-Sphere 

Model 

Fig. 2 and Fig. 3 show an example of the decision regions 

created using the hyper-sphere models, which can create 

complex decision regions by combining two or more decision 

regions of hyper spheres. Feature trajectory quickly enters the 

decision region even if a complex feature trajectory is drawn; 

this leads to shorter discrimination processing time. In 

addition, the hyper-sphere model obtains high discrimination 

accuracy even if the moving average includes fewer points. 

The discrimination processing time, which was less than 300 

ms in our method, must be less than 300 ms to achieve 

real-time motion discrimination because the shortest delay 

time perceivable by users is roughly 300 ms, and a robot hand 

has a mechanical delay time. 

D. New Hyper-Sphere Models for Finger Motions 

We created new hyper-sphere models for four finger 

motions to achieve real-time motion discrimination with high 
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accuracy. We identified two features about the feature 

trajectory when subjects performed finger motions: 1) The 

feature trajectory at the start and the end of the performed 

motions was drawn in the same direction. 2) The feature 

trajectory is more complex around the maximum value of the 

muscle strength. The previous hyper-sphere models placed 

hyper spheres along the feature trajectory from the point 

where the muscles do not contract to the maximum value point 

at which they do. Thus, the new hyper-sphere models place 

hyper spheres along the feature trajectory from the point 

where the muscles do not contract to the maximum value point 

at which they do and from the maximum value point at which 

the muscles do to the point where the point where they do not 

contract (Fig. 4). Because of this, they can enclose the entire 

feature trajectory by hyper spheres and consider a more 

complex feature trajectory. We used this new model and 

experimentally verified the effectiveness of a real-time motion 

discrimination method for four finger motions. 

 

 

 

 

 

 

 

 
Figure 4.  Decision Regions of New Hyper-Sphere Models 

III. EXPERIMENT 

A.  Experimental Equipment 

Fig. 5 shows our experimental system. We measured the 

EMG signals with EMG amplifiers (EMG-025, Harada Hyper 

Precision Inc.) that amplified the signals 500 times (54 dB). 

We employed disposable electrodes that were built into the 

preamplifier. EMG signals were measured in four channels 

from the surface electrodes that were arranged around the 

forearm. A PC (Core 2 Duo, 3.16 GHz, 2 GB) served as the 

host computer. A 3D hand model control system was designed 

using MATLAB/Simulink (dSPACE), and a 3D hand model 

was built by MotionDesk (dSPACE). DS1005 (Power PC 800 

MHz, dSPACE) and DS2002, DS2103, and DS3002 were 

used for the DSP, A/D, and D/A conversions.  

The EMG signals were full-wave rectified and smoothed 

with a 150- ms moving average for the feature extraction. The 

summing of the EMG signals had a threshold value. If the 

summed EMG signals fell below it, the motions couldn’t be 

discriminated.  

 

 

 

 

 

 

 

 
 

Figure 5.  Experimental System 

B. Experimental Method 

1) Verification Experiment of Time Variation: The 

subjects of the experiment were two able-bodied adults 

(Subjects A and B), who had previously participated in our 

experiments. The discrimination motions were three finger 

motions: open, grasp, pinching. The subjects performed three 

motions 20 times each to verify the discrimination accuracies. 

They did this six times in a row without resting their arms to 

verify the change in the discrimination accuracies and the 

discrimination processing time. We used the previous 

hyper-sphere models. 

2) Verification Experiment on Four Finger Motions: Our 

experiment subjects were five able-bodied adults (A, B, C, D, 

and E). Subjects A and B are the same individuals from the 

verification experiment on time variation. Subjects C, D, and 

E did not participate in the previous experiments, so they 

spent one to two hours training how to use our experimental 

system. The discrimination motions were four finger motions 

(open, grasp, pinching, and 2-5th finger flexion). The subjects 

performed three motions 20 times each to verify the 

discrimination accuracies. 

IV. RESULTS AND DISCUSSION 

A. Verification Experiment on Time Variation 

The experiment ended after about one hour for every 

subject. Fig. 6 shows the discrimination accuracy. Our method 

could not discriminate with high accuracy the 5th and 6th 

experiments for Subject A and the 6th experiment for Subject 

B. Fig. 7 shows the discrimination processing time, which was 

less than 300 ms for every subject, every experiment, and 

every motion. Our method was effective compared with an 

experiment where the subjects performed three motions 20 

times each four times in a row without resting their arms.  

We thought why the 5th and 6th experiments for subject A 

and the 6th experiment for subject B resulted in less successful 

results. Our method treated the feature trajectories obtained 

from the size of the EMG signals in the multidimensional 

space to discriminate the motions. We found no big tendency 

in the change of the size of the EMG signals caused by the 

time variation. Thus, it is important to achieve a motion 

discrimination method that considers time variations to 

evaluate how time affects the feature trajectory. Fig. 8 shows 

the feature trajectories around the axis of the size of the 

feature quantity of the Subject A in the 6th experiment. The 

feature trajectories of each motion approached due to the time 

variations. The reason the feature trajectory was changed by 

the time variation is probably that the feature extraction 

parameter of the initial learning was insufficient to extract the 

features of each motion for the EMG signals after the time 

progress. The hyper-sphere models of the initial learning 

failed to discriminate the motions with high accuracy. We 

must feed-back the experimental data again to learn the 

parameters of the feature extractions or the hyper-sphere 

models. In the future, we will propose a new motion 

discrimination method to resolve this problem.  
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Figure 6.  Discrimination Accuracy of Subjects A and B 

 

 

 

 

 

 

 

 
Figure 7.  Discrimination Processing Time of Subjects A and B 

 

 

 

 

 

 

 

 
Figure 8.  Example of Feature Trajectory after Time Variation 

B. Verification Experiment on Four Finger Motions 

Table 1 lists the discrimination accuracy, which 90% for 

every subject and every motion. Moreover, the elbow motions 

did not interfere with the discrimination of the finger motions. 

Table 2 lists the discrimination processing time, which was 

less than 300 ms for every subject and every motion. Our new 

hyper-sphere models are effective against finger motion 

discrimination.  

 
TABLE I. DISCRIMINATION ACCURACY OF NEW 

HYPER-SPHERE MODEL [%] 

 

 

 

 

 

 

 

 

 
TABLE II. DISCRIMINATION PROCESSING TIME OF NEW 

HYPER-SPHERE MODEL [ms] 

 

 

 

 

 

 

 

V. CONCLUSION 

We experimentally verified the effectiveness of our 

method that changes the feature quantities caused by time 

variation and a real-time motion discrimination method using 

new hyper-sphere models for four finger motions: open, grasp, 

pinching, and 2-5th finger flexion. We reached the following 

conclusions: 

1) A method using hyper-sphere models was effective 

compared with an experiment where the subjects 

performed three motions 20 times each four times in a 

row. 

2) Time variation does not negatively affect real-time 

motion discrimination in our method. 

3) A method using new hyper-sphere models can 

discriminate four finger motions (open, grasp, pinching, 

and 2-5th finger flexion) with over 90% accuracy and 

helps eliminate incorrect discriminations that might be 

caused by elbow motions. 
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