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Abstract— In mobile health applications, non-expert users
often perform the required medical measurements without
supervision. Therefore, it is important that the mobile device
guides them through the correct measurement process and
automatically detects potential errors that could impact the
readings. Camera oximetry provides a non-invasive measure-
ment of heart rate and blood oxygen saturation using the
camera of a mobile phone. We describe a novel method to
automatically detect the correct finger placement on the camera
lens for camera oximetry. Incorrect placement can cause optical
shunt and if ignored, lead to low quality oximetry readings.
The presented algorithm uses the spectral properties of the
pixels to discriminate between correct and incorrect place-
ments. Experimental results demonstrate high mean accuracy
(99.06%), sensitivity (98.06%) and specificity (99.30%) with low
variability. By sub-sampling pixels, the computational cost of
classifying a frame has been reduced by more than three orders
of magnitude. The algorithm has been integrated in a newly
developed application called OxiCam where it provides real-
time user feedback.

I. INTRODUCTION

Pulse oximetry provides a non-invasive measurement of
heart rate (HR) and blood oxygen saturation (SpO2). Blood
perfused tissues are illuminated by a light source with a
known spectrum, and a photo detector records the photons
that were not absorbed or scattered and passed through the
tissue. Beer-Lambert’s law stipulates that absorption of a
photon in a given medium i is based on the wavelength of the
photon λ, medium concentration c and distance d traveled,
such that

I = I0e
−

∑n
i=1 εi(λ)cidi , (1)

where I is the light intensity and ε the extinction coeffi-
cient. Since the optical path of the photons and consequently
the total absorption changes with each heart beat due to an
increase in blood volume, the light intensity measured by the
sensor also changes. The recorded variation of light intensity
is the photoplethysmogram (PPG) which allows for accurate
estimation of the heart rate (Fig. 1). When the photo detector
used in pulse oximetry is replaced by a pixel array, it is called
photoplethysmographic imaging [1], and when SpO2 is also
calculated, it is called camera oximetry [2], [3].

We have developed an Android mobile phone software
application called OxiCam that records HR and SpO2 using
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Fig. 1. Photoplethysmogram obtained from pulse oximetry. When blood
volume in the finger is maximal, the recorded light intensity is lowest due
to increased absorption (circles).
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Fig. 2. Typical setup for photoplethysmographic imaging. A finger is
placed on the mobile phone camera and continously illuminated using the
integrated LED flash. Photons not passing through oxygenated tissue or
coming from other light sources create an optical shunt (A). Ideally, all
recorded photons have passed oxygenated tissue before hitting the sensor
(B).

camera oximetry. The intended uses of OxiCam are mobile
health applications for non-specialized health workers and
lay users interested in their own health. Since the target users
are not experts in pulse oximetry or clinical monitoring in
general, it is important that the device or the software can
guide them through the correct measurement process and
automatically detect potential errors that could impact the
readings.

In this paper, we describe a novel method employed by
OxiCam to automatically detect correct finger placement on
the camera lens and provide feedback to the user. Incorrect
placement may cause optical shunt and if ignored, lead
to low quality oximetry readings [4]. Optical shunt occurs
when photons that do not pass through tissue containing
oxygenated blood are detected by the sensor (Fig. 2). This
creates an undesirable, low signal-to-noise ratio and de-
pending on severity, introduces errors in the HR and SpO2

calculations. We present decision criteria for automatically
distinguishing correct from incorrect finger placement and
conduct an experiment to optimize the decision thresholds.
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A. Background

The current literature describes methods based on the
spectral properties of the image to discriminate between
correct or incorrect placement of the finger. In [5] a relatively
simple method was presented. Seven rules, based on the
mean x̄ and standard deviation σ of the three color channels
r, g and b, were used together with 5 thresholds Th such as

p(x̄) =



if x̄g + σg ≥ Thming

and x̄r − σr > Thminr

and x̄g + σg < Thmaxg

1 and x̄b + σb < Thmaxb

and σr ≥ Thminσ

and σg ≥ Thminσ

and σb ≥ Thminσ

0 otherwise

(2)

where p is the label for correct (=1) and incorrect (=0)
finger placement, x̄ is a vector containing 8-bit pixel values
of length N . The thresholds were determined during a
calibration phase of undisclosed duration at the beginning of
each recording. Quantitative evaluation of the correct finger
placement detection rate was not reported. The reported
method is not computationally efficient, as the means and
standard deviations of all pixels have to be computed at each
new image frame.

The goal of the subsequent sections is to present an
improved detection method and to quantify the finger recog-
nition rate.

II. METHODS

A. Data Collection

Twenty video recordings from a total of 5 subjects, each
of duration of 30 s, were collected with the OxiCam
application. OxiCam was installed on a Samsung Galaxy
Ace mobile phone, running the Android 2.3.4 operating
system. The videos were saved in 240 x 320 pixels resolution
(QVGA) and the ”mp4” format to minimize processing load.
The video sampling rate was 30 Hz. The white balance was
set to ”incandescent” as this has been shown to be the optimal
configuration for this type of camera [6]. Each recording
consisted of an initial phase of 15 s where the subject’s
finger was placed incorrectly, followed by 15 s of correct
placement on the camera lens and LED. Incorrect placement
was defined as a placement that would produce optical
shunt. Various background colors and brightness levels were
simulated during the first phase. Incorrect finger placement
scenarios were produced by systematically changing the
optical shunt from 20% to 100%. Annotations for correct
finger placement were verified manually by the first author.

B. Algorithm Design

It was clear from the recorded videos that the correctly
placed finger presents a unique spectral distribution which is
dominant in the red color spectrum that was also observed by
Lamonaca et. al. [5]. Consequently, the histogram for each

frame was calculated and displayed over time (Fig. 3). It was
obvious that correct finger placement could be distinguished
from incorrect placement using 3 thresholds. Blue and green
were never present in high concentrations while red alone
was always present in high concentrations. The three new
classification rules established were:

p(x̄) =


1 if x̄r > Thr

and x̄g < Thg

and x̄b < Thb

0 otherwise

(3)

The 3 thresholds are determined by :

Thλ = ȳλ + f × σλ (4)

where ȳ is a frame vector of known videos of correct
placements and f is a variable scaling factor. This rule
was inspired by (2) that was established by [5]. We have
introduced the scaling factor f as it allows for adjustment of
the confidence intervals for determining the mean intensity
of each color channel in a new, unknown frame.

C. Parameter Optimization

To find the optimal thresholds, we performed a ’leave-one-
out’ cross validation experiment. Videos were divided into
a training set and a test set. The training set was composed
of all recordings but one. The remaining video was used
in the test set. The test video was then exchanged with a
video in the training set. This was repeated until each video
had been in the test set once. During training, the thresholds
were modified by changing f from 0.01 to 2 in increments
of 0.01. This corresponds to a confidence interval of 0.8%
to 95%. The threshold providing the highest performance on
the training set was selected for performance testing on the
test set. The performance function P was designed such that

P = Se+ 2 × Sp (5)

Se =
TP

TP + FN
(6)

Sp =
TN

TN + FP
(7)

where Se is the sensitivity, Sp the specificity and TP
is the number of true positives, TN is the number of true
negatives, FN the number of false negatives, and FP the
number of false positives. Specificity was weighted more as
it is more important in everyday use to have fewer FP (type
1 errors). It is preferable to ignore frames that have correct
placement compared to calculating HR and SpO2 during an
incorrect placement. Given the low degree of freedom of the
search space, over-fitting during training was not likely to
occur and no additional validation on the training procedure
was necessary.

Using the complete set of pixels for each frame to calculate
the finger placement is computationally expensive. We were
interested in reducing this computational effort. For this, we
repeated the experiments by using only a fraction of the
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Fig. 3. Histogram of the red (top), green (middle), and blue (bottom) video channel for a typical video recording. The boxes show three video frames
at a given time. In the upper left corner of these boxes the estimated optical shunt is displayed.

pixels in the test set. At each time step, pixels were randomly
selected for the calculation of the mean x̄. The number of
pixels N was modified to 10%, 1%, 0.1%, and 0.01% of the
original number of pixels in a frame.

We report the mean and standard deviation of the mean
error as well as the sensitivity and specificity. Sensitivity and
specificity were also represented in a receiver operating curve
(ROC) graph.

III. RESULTS

The median scaling factor that produced the best training
performance was f̃ = 0.7. This f̃ was selected to calculate
the generalized thresholds. As desired, these thresholds pro-
duced a higher specificity than sensitivity (Fig. 4). A high
classification rate with low variability over the 20 iterations
was obtained (Table I).

TABLE I
ACCURACY, SENSITIVITY AND SPECIFICITY OF OPTIMAL CLASSIFIER

Pixels Accuracy (%) Sensitivity (%) Specificity (%)

10% 99.43 ± 0.12 98.80 ± 0.37 99.26 ± 0.76
1% 99.29 ± 0.16 98.53 ± 0.42 99.31 ± 0.74
0.1% 99.06 ± 0.20 98.17 ± 0.41 99.30 ± 0.74
0.01% 98.51 ± 0.22 97.58 ± 0.35 99.07 ± 0.32

A. Computational Benefit

The rules as described in (2) require 9×N + 9 operations
for each frame, where N = 76800 is the number of pixels in
each frame. The newly proposed rules (3) require 3×N+3.
This decrease by a factor of 3 is not significant but can
be helpful when processing power should be conserved. The
selection of a subsample of pixels to 103 of the original frame
size can save a significant number of operations without

7482



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

 

 

10
1
0.1
0.01

0.7

N (%)

f

1-Speci�city

Se
ns

iti
vi

ty

Fig. 4. Receiver operating curve (ROC) for 4 different pixel vector lengths
N . A perfect classifier would lie in the upper left corner (0,1). The stars
indicate the test classifier performance when f = 0.7 (best performance
P during training). Note that for resolution reasons the axes show only a
narrow range of 0.9 to 1 for sensitivity and specificity.

compromising performance (Table I). Further reduction in
number of pixels causes a visible reduction in performance
(Fig. 4).

IV. DISCUSSION

We have demonstrated an efficient algorithm to assess
the accuracy of finger placement on the camera lens of a
mobile phone. This is an essential approach for real-time
camera oximetry. High sensitivity and specificity has been
achieved. The presented method is a generalized solution
and does not require real-time adaptation of parameters. This
generalization has been tested on identical cameras and white
balance setting only. Changes in white balance will inevitably
alter spectral composition of captured images [6]. Under
such conditions, the thresholds will require adjustments to
be made.

The suggested decision rules reduced the computational
effort by a factor of 3 compared to previously published
methods [5] by eliminating the real-time computation of
the standard deviation of all pixels. Additionally, we have
successfully shown that the computational load can also be
reduced by three orders of magnitude by sub-sampling the
frame without impacting the classification accuracy. This
method can be optimized further by pre-selecting pixels
from regions-of-interest. Further, the introduction of a time
dependent algorithm that uses previous frame classifications
could eliminate noise in the classification, particularly in
state transitions when the finger is placed onto the lens.

The algorithm functionality could be extended with pulse
recognition. The additional processing step would provide
not only information about correct placement, but also indi-
cate if correct pressure is applied. This could be achieved by
estimating the quality of each pulse [7]. Such an approach

Fig. 5. OxiCam user interface with real-time feedback about correct finger
placement (green checkmark).

could guide the user more accurately in getting a good PPG
signal.

The presented algorithm has been implemented in Oxi-
Cam. A green checkmark is provided as feedback for correct
placement in real-time, frame-by-frame to the user (Fig. 5).
OxiCam is currently undergoing clinical testing for HR and
SpO2 accuracy.
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