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Abstract² Analyzing the propagation of uterine electrical 

activity is poised to become a powerful tool in labor detection 

and for the prediction of preterm labor. Several methods have 

been proposed to investigate the relationship between signals 

recorded externally from several sites on the pregnant uterus. A 

promising recent method is the multivariate autoregressive 

(MVAR) model. In this paper we proposed a windowed (time 

varying) version of the multivariate autoregressive model, called 

W-MVAR, to investigate the connectivity between signals while 

still respecting their non-stationary characteristics. The 

proposed method was tested on synthetic signals as well as 

applied to real signals. The comparison between the two methods 

on synthetic signals showed the superiority of W-MVAR to 

detect connectivity even if it is non-stationary. The application of 

W-MVAR on multichannel real uterine signals show that the 

proposed method is a good tool to distinguish non-labor and 

labor signals. These results are very promising and can very 

possibly have important clinical applications in labor detection 

and preterm labor prediction.  

I. INTRODUCTION  

Multichannel recordings are necessary to investigate 
physiological phenomena that have an extended range over an 
organ or an organ system such as the brain, skeletal muscles or 
the uterus. Recently most of the actors in the field of uterine 
EMG or electrohysterogram (EHG) have adopted multi 
electrode configuration for measurement and concentrate on 
the study of how the uterus synchronizes and starts to operate 
as a whole as labor progresses. The methods most often used 
in the literature for preterm labor prediction use only the 
analysis of the high frequency content of the EHG [1, 2] which 
is thought to be primarily related to uterine cell excitability 
[3]. These methods are however not currently used in routine 
practice as far as we know. Recently, studies using 
propagation analysis in the view of detection labor and 
prediction preterm labor have started to appear. These 
methods include the use of nonlinear correlation analysis [4], 
phase synchronization [5] and more recently the use of 
propagation velocity (PV) to classify labor and non-labor 
signals [6]. These methods have shown the clear superiority of 
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propagation parameters over the frequency based excitability 
parameters to detect labor. 

A new way to analyze relationships between multichannel 
signals that is based on estimated coefficients from 
Multivariate Autoregressive model (MVAR) of the signals 
has recently been presented. The main advantage of MVAR 
method is to take into account of the connectivity between all 
the signals and not between only two signals. The main 
connectivity estimators based on the MVAR model are the 
Granger causality index (GCI), the directed transfer function 
(DTF) and the Partial Directed Coherence (PDC). These 
methods have mostly been applied in various fields of brain 
research [7, 8] and have not been applied on the EHG signals 
before. A drawback of the MVAR method is that it assumes 
that the signals are stationary which not the case of the 
majority of biosignals. 

In this work we propose a windowing (time-varying) 
version of MVAR called W-MVAR aimed to respect the 
non-stationary characteristics of EHG signals. We compare 
W-MVAR with the classical MVAR on synthetic signals as 
well as on real EHG signals in the view of distinguishing 
between non labor and labor signals. 

II. MATERIALS AND METHODS 

A. MVAR 

For a multichannel signal X with m dimensions, the 
multivariate autoregressive (MAR) process can be defined as: 
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where ( )
i

kH represents independent Gaussian white 

noise with covariance matrix ¦ and A1�«$p are the 
coefficient matrix (m x m). This time domain representation 
can be translated to frequency domain by computing the 
power spectral density matrix: 

( ) ( ) ( )hS f H f H f ¦                             
(2)

 
 

Where h denotes the Hermitian transpose. H is the transfer 
function defined as: 
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Where A(f) is the Fourier transform of the coefficients, let 

( ) [ ( ) ( )... ( )]1 2A f a f a f a f
m

  and ( )a f
ij  is the i, jth element of 

( )A f . Several estimators have been proposed to analyze 
connectivity between signals using the MAR coefficients. The 
most popular methods are: 

 
1. Granger causality index (GCI) 

A time domain method proposed by Hesse et al. [9] and 
defined as  
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where VAR is the variance. 

2. Partial directed coherence (PDC)  

As a parametric approach in the frequency domain, PDC 
was introduced to detect causal relationships between 
processes in multivariate dynamic systems. PDC accounts for 
the entire multivariate system and makes differentiation 
between direct and indirect possible influences. It was initially 
proposed by Baccala et al. [7] and defined as 
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The PDC from j to i represents the relative coupling 
strength of the interaction of a given source, signal j, with 
regard to some signal i, as compared to all of j¶V�FRQQHFWLRQV�
to other signals. Thus, PDC ranks the relative strength of 
interaction with respect to a given signal source while 
fulfilling the following conditions:   
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For i=j, the PDC represents how much of Xi¶V�RZQ�SDVW�LV�
not explained by other signals. 

 
3. Directed transfer function (DTF) 

The DTF is a frequency-domain analysis technique to 
detect directions of interactions and it was proposed by 
Kaminski et al. [10] 
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We can observe that DTF uses the elements of the transfer 

function matrix H while PDC uses those of ( )A f . Since the 
computation of PDC does not involve any matrix inversion, it 
is computationally more efficient and more robust than DTF. 
Further, PDC is normalized with respect to the total inflow of 
information, but DTF is normalized with respect to the total 
outflow of information. 

B. W-MVAR 

The MVAR supposes that signals are stationary which is 
not realistic in the majority of biosignals and in particular in 
dealing with EHG. Here we propose a segmentation based 
approach to take into account the non-stationarity of the 
signals. In this case, the data is divided into short overlapping 
segments and the AR parameters are estimated from each 
segment. The result is a time-course of the AR parameters that 
describes the time-varying characteristics of the process. The 
segment length determines the accuracy of the estimated 
parameters and defines the resolution in time. A balance has to 
be maintained between time resolution (limited by 
stationarity) and the statistical properties of the fitted model. 
As a rule of thumb, the window length should possess a few 
times more data points than the number of estimated model 
parameters. Here, we choose the window length as 6s with 
overlap of 50% and data length (synthetic and real) equal to 
100s, which we consider to be a good compromise between 
noise reduction and temporal resolution. 

C. Signals 

1. Synthetic signals 

The main characteristic we want to test for here is the 
sensitivity of the methods to the non-stationarity of the 
signals. We generated a simulated process that contains linear 
non-stationary (LNS) relationships between the signals. We 
use a modified version of three dimensional VAR processes 
[8, 11] with time-varying parameters: 
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which represent the influence from x2 to x1 and x3 to x1 and 
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representing the unidirectional influence from x3 to x2. 

 

2. Real signals 

We used real uterine signals from 7 women during 
pregnancy and 6 women during labor. The signals were 
recorded by using 4x4 matrix posed on the woman abdomen. 
The measurements were performed at the Landspitali 
University hospital in Iceland, following a protocol approved 
by the relevant ethical committee (VSN 02-0006-V2). The 
sampling rate was 200 Hz. The EHG signals were segmented 
manually to extract segments containing uterine activity bursts. 
Bipolar signals are used here with 30 pregnancy bursts and 30 
labor bursts. The 12 bipolar channels obtained by subtracting 
the signals pairwise up and down are used in the following 
analysis. 

III. RESULTS 

A. Synthetic signals: 

In this section we present the results of applying GCI on 
the LNS system described above and the coefficients are 
estimated using the MVAR and the W-MVAR. The LNS 
system is described in Fig. 1A. A rectangular connectivity 
pattern is simulated between signal x2Æx1 and x3Æx1 and a 
triangular connectivity pattern is simulated between x3Æx1.  
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 Figure 1. A) Simulated model B and C) GCI results using MVAR and 

W-MVAR respectively.  

Fig. 1 (B and C) shows the results obtained. The figure 
indicates no change in the estimator values along all the 
signals which mean that MVAR cannot detect the 
relationships between the signals when a non-stationary 
characteristic is presented, while the connectivities are well 
detected by the W-MVAR model. 

B. Real signals 

The first and very important step is the choice of the model 
order. Several methods have been proposed to estimate the 
optimal order of MVAR model. In this work we use the 
Schwarz Bayesian Criterion (SBC) [12]. The model order 
computed by SBC of the real signals was about 35. We found 
the same value when using another order estimation criterion 
namely the Final Prediction Error (FPE).  

On the real signals we are more interested in the 
frequency-based methods such as DTF and PDC. A 
comparison (not shown) between the two methods PDC and 
DFT indicates the superiority of PDC to detect the 
connectivity between synthetic signals. These observations 
confirm the results of Baccala et al. [7] which indicated that 
PDC is more powerful than DTF in analyzing signal 
relationships tested on several synthetic simulations and EEG 
real signals. For this reason, we applied the PDC method to 
the EHG signals as the main aim is to find a tool that can 
differentiate between signals for women during normal 
pregnancy and signals from women in labor. 

The quantitative criterion estimated from PDC is obtained 
as follows: 

- Compute evolution of PDC between the 12 bipolar 
EHG signals to obtain 12x12 matrices for each 
contraction. 

- Compute the maximum of PDC values. 
 

The mean value over the matrix is the quantitative value 
representing each contraction used in the classification 
procedure.  

We computed this criterion by estimating the coefficients 
using both MVAR and W-MVAR. Table 1 illustrates the 
classification results of pregnancy and labor bursts by both 
methods. The results indicate mean and standard deviation of 

A) 

B) 

C) 
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PDC values, it shows that MVAR shows poor performances in 
distinguishing labor and non-labor bursts with p=0.12, while 
the signals are very well classified by the W-MVAR with 
p<0.01. We note that the pregnancy values are similar with 
MVAR and W-MVAR, while the difference is clear in the 
labor bursts. This seems to indicate that labor signals have 
more pronounced non-stationary characteristics than the 
pregnancy signals which are taken into account by the 
W-MVAR.  

TABLE I.  COMPARAISON BETWEEN MVAR AND W-MVAR IN 
CLASSIFYING PREGNANCY AND LABOR BURSTS 

 MVAR W-MVAR 
 
Pregnancy 

0.045±0.03 0.05±0.045 

Labor 0.067±0.04 0.12±0.07 
 

P (two tailed 

student test) 
0.12 <0.01 

 

IV. DISCUSSION  

In this paper we have proposed a time varying version of 
the multivariate autoregressive model to investigate the 
connectivity between non-stationary signals. The proposed 
model was tested on synthetic signals as well as real signals. 
On the synthetic signals, W-MVAR showed a clear 
superiority in detecting relationships between signals when 
non-stationary characteristics are present in the signals.  

The application of the MVAR and W-MVAR on EHG 
signals showed clearly that W-MVAR is very good in 
differentiating pregnancy and labor signals whereas MVAR is 
not. The successful estimation of PDC depends however on 
the reliability of the fitted MVAR model, since all of the 
necessary information is derived from the estimated model 
parameters. The directionality aspect could be investigated 
also by using the monopolar signals denoised recently by the 
algorithm called CCA_EMD [13] 

The window length is an important issue because it 
determines the resolution in the time- and frequency domain. 
Here, window length for W-MVAR was chosen empirically 
and as appropriate for the EHG signals. We think that 
additional work is needed to define an automatic criterion for 
the optimal window length to make the application more 
general and useful for other biomedical signals, as well as 
comparison with other existing methods. 

V. CONCLUSION 

In this paper, we proposed a time varying version of 
MVAR model. The proposed version was shown a better 
performance than classical stationary MVAR on synthetic 
signals as well on real EHG signals. The use of W-MVAR 
indicated a high capacity to differentiate non-labor and labor 
signals. We think that W-MVAR could be a powerful tool to 
the classification of pregnancy and labor signals for labor 
detection and then preterm labor prediction. 
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