
Preliminary global sensitivity analysis of a uterine
electrical activity model.

Jeremy Laforet, Member, IEEE and Catherine Marque, Member, IEEE
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Abstract—A comprehensive multiscale model of the uterine
muscle electrical activity would permit understanding the im-
portant link between the genesis and evolution of the action
potential at the cell level and the process leading to labor.
Understanding this link can open the way to more effective tools
for the prediction of labor and prevention of preterm delivery.

For better results, these models and tools should be adapted to
each patient. The first step toward this patient specific adaptation
is to define which of the parameters must be identified and what
are the signal features most suitable to do so. The sensitivity
analysis of the model will enable us to answer this question.

To study the sensitivity of the 26 model parameters, We use
the principle of elementary effects as described by Morris [1] .
We assume no prior knowledge of the possible variations of the
parameters and use uniform distributions bounded by ±20%
of their nominal value. As model output we considered not on
the simulated EHG signal itself but 5 classical features extracted
from the signal.

The results we obtain are the ranking of the model parameters
in order of sensitivity. With 4 of the features the list of sensitive
parameter is very consistent, however there are some differences
in the rankings.

I. INTRODUCTION

In Europe, the incidence of preterm birth is 5-12% and it is
the leading cause of perinatal mortality and morbidity [2]. It
causes considerable emotional and financial burden to families
and society as pre-term children require intensive care and may
require long term special care.

A promising non-invasive method for studying and mon-
itoring the uterine contractility is the analysis of the elec-
trohysterogram or uterine EMG (EHG). The EHG is the
signal recorded on the abdominal surface, which represents
the electrical activity triggering the mechanical contraction of
the myometrium. It has been demonstrated to be representative
of the uterine electrical activity recorded internally. As it is
related to the trigger of the uterine mechanical contraction, its
analysis is a promising method for accurate early recognition
of preterm contractions. During the last 15 years, many teams
have worked on the possible detection of preterm labour by
means of external EHG recording and processing.

The ERASysBio+ project model we propose to use follows
this direction. It starts from a simplified model of the myome-
trial cell that keeps the link with the ionic phenomenon (in
order to reduce the computational time and needed resources,
but keeping the link with physiological interpretation). It then
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models the propagation at the tissue level (by using the simple
cable model as used for cardiac tissue) for a 2D surface with
thickness. Then a model representing the specific anatomy
of pregnant woman’s abdomen (Muscle, fat and skin layers),
permits to obtain, from the propagated signal, a simulated
EHG recorded by a chosen electrode configuration.

Using the proposed EHG model, we will first tailor it to a
specific patient by determining the anatomical parameters (i.e.
fat and skin layers, uterus dimensions) influencing the volume
conductor. These parameters will be determined by means of
ultrasound imaging performed on each patient. We will then
identify, from the recorded EHG, the physiological parameters
describing the uterine activity: cell excitability (i.e. in terms
of ionic channel conductance) and propagation characteristics
(i.e. tissue conductivity). We envisage this information (related
to the physiology of uterine contraction), when fed into the
diagnosis system, to be more efficient for clinical diagnosis
than the features directly extracted from EHG processing.
Indeed, these EHG features have no direct relationship with
the contraction physiology, as opposed to the identified model
parameters.

The first step toward this patient specific adaptation is to
define which of the parameters must be identified and what
are the signal features most suitable to do so. The sensitivity
analysis of the model will enable us to answer this question.
Indeed the most sensitive parameters are the ones which value
are crucial for simulation accuracy, but they also will be the
most efficiently identified.

As the computational cost of the multi-scale model is
important (around 90 minutes each without parallelism), we
choose to use a screening method as a first approach to a
global sensitivity analysis. Screening methods aim to give
an overview on the model sensitivity to parameters variation
relying on few model runs.

In this paper, we’ll first briefly summarize the multi-scale
model (previous detailed in [3], [4]) and then describe the
screening methodology we applied. Preliminary sensitivity
analysis will be presented and discussed.

II. METHODS

A. 2D multi-scale model

To model the generation of the electrical activity and its
propagation within the myometrium we adopted a reaction-
diffusion formalism. The reaction term corresponds to the
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model of cell excitability and the diffusion term to the com-
munication between the cells.

In the present study the Red3 model (Reduced 3 equations)
will be used. It is a simplified version of the model from [5],
based on Hodgkin-Huxley model. It takes into account the
main ionic currents through the cell membrane. Red3 is up to
60% faster with an acceptable accuracy [3].

The ODE system representing Red3 can be expressed as
follows:

dVm
dt

=
1

Cm
(Istim − ICa − IK − IKCa − Ileak) ,

dnK
dt

=
hK∞ − nK

τnK

, (1)

d[Ca2+]

dt
= fc

(
−αICa −KCa[Ca2+]

)
,

with Vm the trans-membrane potential, nK the potassium
activation variable, and [Ca2+] the intracellular calcium con-
centration.

At the tissue scale, the communication between the my-
ometrial cells through gap-junctions is modeled by the spatial
diffusion of the electrical potential over the cells.

The cells are arranged into a Cartesian grid, which can be
0D (a single cell), 1D (a cable-like line of cells), 2D (a flat
surface), or 2.5D (a flat surface with non-null thickness). The
grid is modeled by a N-dimensional state array where each
element represent a cell which is electrically coupled with its
direct neighbors (2, 4 or 6 depending on the dimensions).

Finally, we add a two-layer padding on the borders to avoid
side effects of the spatial filtering. These ’ghost cells’ have a
coefficient of diffusion 104 times lower than the other cells to
efficiently attenuate the signals at the borders.

Certain elements of the cell/tisue model were kept constant
in this study. We simulate the myometrium area directly under
the electrode grid, so we use a 7cm by 7cm square (140+4
cells in each direction). Each cell is considered to be a square
of 50µm side. And the stimulation is applied to a pacemaker
area of 4 by 4 cells at the center of the surface. The figure 1(a)
shows an example of such simulation conditions.

To simulate the effect of the tissues interposed between
the myometrium and the recording surface, we adopt the
model proposed in [6], which allows modeling the surface
EHG in the spatial frequency domain as the product between
an electrical source, at the myometrium, and an analytical
expression representing the effect of the volume conductor.
To improve the volume conductor model described in [6] and
in [3], we extended it to two dimensions.

The electrical source is the transmembrane potential Vm,
previously computed at the tissue level using a 2D Red3
model.

The volume conductor is considered as made of parallel
interfaces separating the different abdominal tissues, namely,
the myometrium, where the source is placed at a depth z = z0,
the abdominal muscle, fat, and skin. The volume conductor
effect depends on the tissue thicknesses, their conductivities,

and the source depth, z0. All these tissues are assumed to be
isotropic with the exception of the abdominal muscle. For the
tissue conductivities, the values reported in the literature are
used for simulating a signal propagating along the direction
parallel to the vertical line of the abdomen. Finally, we assume
the source to be close to the myometrium-abdominal muscle
interface, i.e., z0 → 0.

In order to visualize a simulated EHG similarly to a
recorded one, we simulated the surface EHG in the spatial
domain for subsequent time instants and then reconstructed
the time samples from the spatial ones. Indicating by CV the
conduction velocity, a sampling frequency ft = 200 Hz was
chosen, in time, in order to verify the relation ft < fz· CV,
to avoid artifacts due to aliasing in the reconstruction of the
signal in the time domain.

We include a simple model of electrode grid to generate
EHG signals similar to the ones recorded experimentally. It
is flexible, and has been designed to reproduce the different
type of arrays we may use in human or animal experiments.
Finally, white Gaussian noise can be added to the signals to
match the typical SNR of recorded signals (5 to 10 dB). This
noise addition is useful in order to test the noise reduction
stages of signal processing tools and robustness to noise of
the extracted features.

In this study, we use the grid shape of 4 by 4 electrodes, each
spaced by 1.75cm (center to center). We present in figure 1(b)
an example of simulated monopolar EHG signals obtain with
a such grid. This example is shown without additon of noise.

B. Sensitivity Analysis

To study preliminarily the sensitivity of the model parame-
ters we use the principle of elementary effects as described by
Morris [1]. This screening method is based on a ”one factor at
a time” design. It uses local variations (the elementary effects)
but averages them over several points in the parameters space.

As we have an large number of parameters (26) and each
run of the model is time consuming (around 90 minutes per
run), we based our study on the work of Saltelli et al. [7]. This
enabled us to obtain two elementary effects per parameter with
only a total of 64 runs of the model while aiming at a good
covering of the parameters space.

The elementary effects are computed this way:

EEi(X) =
f(X1, . . . , Xi + ∆, . . . , Xn)− f(X)

∆
(2)

with X = X1, . . . , Xi, . . . , Xn the vector of parameters and
f the model.

As suggested by [8], we computed the 3 indicators µ∗, µ
and σ as follows for parameter i:

µ∗
i =

1

r

r∑
j=0

∣∣∣EEi(X
(j))
∣∣∣

µi =
1

r

r∑
j=0

EEi(X
(j)) (3)
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(a) Simulated electrical activity at the myometrium level,
amplitude is color-coded.

(b) Simulated EHG signals as recorded by the standard grid
at the skin level, without addition of noise.

Fig. 1. Simulated signals obtained with the multi-scale model (a), both an
tissue and organ scales (b).

σi =

√√√√ 1

r − 1

r∑
j=0

(
EEi(X(j))− µi

)2
with r the set of runs of the model on which the elementary

effect is computed.
The parameters of the multi-scale model to be studied in

the sensitivity analysis are summarized in table I with their
variation ranges.

We assume no prior knowledge of the possible variations of
the parameters, hence we use uniform distributions bounded by
±20% of their nominal value. The temperature (T) and signal
to noise (snr) are the only exceptions as we were able to set
more realistic bounds. The nominal values of the parameters
were taken from [5], [3], [6].

Finally, to reduce the global computational time of this
study the model simulations are run in parallel on a dedicated
workstation. We used 24 threads and one simulation per thread.

C. Signal features

Each simulation of the model produces a 16 channel signal,
20 seconds long and sampled at 200Hz to match the charac-

teristics of the recorded EHG signals.
We computed the elementary effects not on the multichannel

signals themselves but on features extracted from these signals.
For the present study we used 5 different features among the
ones considered to treat EHG signals:

• RMS amplitude of signal Y : rmsA(Y ) =√
1
n

∑n
j=0 Y (j)2,

• time reversibility of signal Y :

trev(Y ) =
(

1
n

∑n
j=0 Y (j)− Y (n− j)

)3
,

• peak frequency (fpeak(Y )) is the frequency of the highest
peak of the power spectrum of signal Y ,

• r2(X,Y ) is the square of the Pearson linear correlation
coefficient between signals X and Y ,

• h2(X,Y ) is the non-linear correlation coefficient between
signals X and Y as defined in [9].

The first three are computed for each channel of the signal
and then averaged to obtain one value per feature and per
signal. The correlations are computed on all possible pairs
of channels and then averaged as well. These features were
selected for this preliminary study as they cover a wide variety
of signal properties: amplitude, frequency, non-linearity and
correlations between channels.

III. RESULTS

The computations were performed on a dedicated work-
station (2x8 cores Intel Xeon 2.40Ghz with hyperthreading,
64Gb Ram, Ubuntu 12.04 64bits). The 64 model simulations
needed to compute the elementary effects of all parameters
were obtained in 165 minutes.

We present in table I the list of most important parameters
obtained for each signal feature by the elementary effect
method previously described. They are ranked by their µ∗
value. Parameters were considered non significantly sensitive
when their µ∗ value was 1000 times smaller than the maximum
for the given feature.

It shows consistent results over the set of features. The
ranking varies but the significant parameters always belong
to the same subset : [a, alpha, Ek, El, ERay, fc, Gca2, Gk,
Gkca, Gl, Iback, Kca, Kd, Rca, Sigma m, snr, T, vca2] (here
presented in alphabetical order).

In several cases we observed that the absolute value of µi

was smaller than µ∗
i . This means that the sign of the different

EEi varies depending of where in the parameter space they
are computed. For example parameter Vca2 for feature time
reversibiliy: |µ|= 4.2e-3 and µ∗= 5.8e-3. The change of sign
points the non-monotony of the effect of these parameters or
the existence of interaction effects.

Finally some parameters show high values of σ (Vca2, Gl
and Eray for RMS amplitude and Ek for time reversibility).
This shows their indirect effect on the features through inter-
actions with other parameters.

IV. CONCLUSION AND DISCUSSION

This preliminary global sensitivity analysis shows promising
results. Allowing studying the whole multiscale model at a
reasonable computational cost.
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Name Description Value range Sensitivity Ranking
min max rmsA trev fpeak r2 h2

a abdominal muscle thickness 7.5e-3 1.1e-2 18 16 9 9 14
alpha current conservation factor 3.2e-05 4.8e-05 11 13 5 5 10
Dx Diffusion coefficient (x axis) 0.16 0.24 * * * * *
Dy Diffusion coefficient (y axis) 0.16 0.24 * * * * *
EL Leak nerst potential -66.4 -99.6 6 2 * 11 5
EK Potassium nerst potential -160.8 -241.2 12 8 * * 11

Eray Electrode radius 0.64 0.96 1 1 * 2 1
f fat tissue thickness 9.05e-3 1.36e-2 * * * * *
fc calcium influx propability 0.32 0.48 16 14 7 4 6

GCa VOCC conductance 0.0176 0.0264 8 6 * 14 15
Gk Potassium channels conductance 0.0512 0.0768 15 11 * 13 17

GkCa K/Ca channels conductance 0.064 0.096 9 12 6 7 13
GL Leak channels conductance 0.0044 0.0066 5 9 3 15 4

Iback Background calcium current 1.9e-2 2.8e-2 17 15 * * 16
kCa Ca extraction factor 0.08 0.12 10 17 10 8 8
kd Half-point potasium concentration 0.008 0.012 14 7 1 12 18

RCa Max. slope of the VOCC activ. 3.848 5.772 3 4 4 10 7
s skin thickness 0.0016 0.0024 * * * * *

Sigma ax Abd. muscle conductivity (x axis) 0.16 0.24 * * * * *
Sigma ay Abd. muscle conductivity (y axis) 0.32 0.48 * * * * 19
Sigma f fat tissue conductivity 0.032 0.048 * * * * *
Sigma m myometrium conductivity 0.16 0.24 4 3 8 6 9
Sigma s skin conductivity 0.4 0.6 * * * * *

snr EHGsignal to noise ratio 0.0 5.0 7 * * 1 2
T Temperature 293.0 315.0 14 10 * 16 12

VCa2 Half-point of the VOCC activ. -19.904 -29.856 2 5 2 3 3

TABLE I
PARAMETERS USED FOR SENSITIVITY ANALYSIS AND THEIR VARIATION RANGE. PARAMETERS ARE RANKED BY THEIR µ∗ VALUE FOR THE CONSIDERED

FEATURES. 1 INDICATES THE MOST SENSITIVE PARAMETERS, A STAR MARKS THAT THIS PARAMETER DID NOT SHOW SIGNIFICANT INFLUENCE.

Peak frequency shows a particular behavior, different of the
other features. µ∗ and σ are high for sensitive parameters and
null for the others, also only 10 parameters are found sensitive.
Hence, this would be useful only to identify few parameters
of the model and will not be retain.

The other features show very consistent results: the signif-
icant parameters are the same, but show some differences in
the rankings. This could be explained as the list of significant
parameters depending on the properties of the model but
their ranking depending more heavily on the properties of the
features. Overall they offer good coverage of the physiological
parameters of the model. However, the abdominal level param-
eters show poor sensitivity. This might be due to the chosen
variation range which might be too small to show the impact
of these parameters. Otherwise, it suggest the possible need to
determine them by other means (ultrasound examination for
example).

The main improvements to this preliminary study that will
be addressed in the near future are :

• better defined parameters ranges to respect physiological
bounds and probability distributions of the parameters
values.

• the use of a more in depth sensitivity analysis method,
based on latin hypercubes design or Fourier analysis.

For the last item, we plan to rely on the screening results to
limit the number of parameters to study and on parallelization
to address the problem of computational cost.
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