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Abstract— In order to solve uncertainty of spatial weights
learned with small amount of training samples for feature
extraction from brain signals, a regularization using similarity
of signals observed in sensors that are located near each other
is proposed. Deriving the regularization is begun defining a
distance between the sensors. Under the distance, the proposed
regularization works so that the spatial weights extracts similar
signals in the nearby sensors. The proposed regularization
is applied to the well known common spatial pattern (CSP)
method that finds spatial weights for EEG based brain machine
interface. In the classification experiment using a dataset of
EEG signals during motor imagery, the proposed method
achieved maximum improvement by 28% in the classification
accuracy over the standard CSP in a setting of even when only
five samples are used.

I. INTRODUCTION

In the fields of brain signal measurement systems such as

multichannel electroencephalogram (EEG) system, wireless

communication techniques such as multiple input multiple

output (MIMO), and so on, sensor arrays are widely used [1].

Improving the signal to noise ratio (SNR) of observed signals

and separating some source signals from observations can

achieved by weighted-sum of the multiple signals observed

in the sensor arrays [1], [2].

In EEG signal processing with the sensor array, the

weights for each sensor are often called spatial weights,

because each sensor is located in different positions. The

spatial weighting is given;

y(t) =

M
∑

i=1

wixi(t), (1)

where xi(t) denotes a signal observed in the ith sensor at

time t, M denotes the number of the sensors, wi denotes

a spatial weight for the ith sensor, and y(t) denotes an

extracted signal. The problem to extract certain components

from observations of the sensor array is to find the weight

vector denoted by w = [w1, . . . , wM ]T under a certain

criterion. For this purpose, learning approaches using ob-

served signals are widely adopted [3], [4]. A number of

signal processing techniques such as Wiener filter, principal

component analysis (PCA), independent component analysis

(ICA) [2], and so forth are involved in this problem.
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However, the learning procedure can be ill-posed because

of limited numbers of sensors and samples. Hence regular-

ization is widely used to prevent overfitting or to solve an

ill-posed problem in signal processing and machine learning

for learning parameters [5], [6]. The regularization for an

optimization problem is to add to an original cost function a

penalty term which represents additional information such as

smoothness or bounds of the vector norm of parameters to

be optimized. In this way, the regularization can help design

more robust spatial weights against ill-posed problems [7].

In some situations, the signals measured by the sensors

that are located near each other (the nearby sensors) are

similar and also the observed components are similar. To

describe the situations, consider a measurement device of

EEG where electrodes installed on scalp observe faint elec-

trical difference. The EEG reflects the summation of the

synchronous activity of thousands or millions of neurons [8],

[9]. Therefore, the nearby sensors likely observe activities

which are induced from the same neurons. For the reason,

the spatial filters such as the Laplacian filter that averages

the signals observed in the nearby sensors are often used

for improving SNR in EEG signal processing [10]. The

regularizations motivated by the idea of averaging signals

observed in the nearby sensors have been proposed in [7],

[11]. However, the regularizations will not work appropri-

ate if the amplitudes between sensors are different due to

the measurement environments, because the regularizations

evaluate the similarities between the weight coefficients. To

solve this problem, we propose a regularization that works

such that the signal that is observed in the ith channel

and weighted by wi becomes as similar as possible to the

weighted signals observed in the sensors that are located near

the ith sensor.

We have applied the proposed regularization to the com-

mon spatial pattern (CSP) method [3], [4], which is a

widely used technique to find effectively spatial weights

efficiently that extract the brain activity for an EEG based

brain machine/computer interface (BMI/BCI) [9]. The reg-

ularized CSP can be solved with a generalized eigenvalue

problem, since the regularization term can be formulated

in a quadratic form. CSP with the proposed regularization

has been demonstrated for artificial signals to show nearby

electrodes have similar weight coefficients. The classification

experiment of motor imagery based BMI (MI-BMI) dataset

has been conducted with comparing an existing regularized

CSP [11] and the proposed method demonstrated improve-

ment of classification accuracy in a setting of the small

number of samples.
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Fig. 1. The electrode arrangement of the international 10-20 method on
the orthogonal coordinates. The red circles represent the electrodes.

II. REGULARIZATION BASED ON SIGNAL SIMILARITIES

IN NEARBY SENSORS

This section addresses the proposed regularization of using

signal similarities in nearby sensors on head surface. A

regularization of using signal similarities in nearby sensors a

sensor array on head surface is proposed in this section. First,

a distance between electrodes of EEG measurement system

is defined in Sec. II-A. Then we introduce the regularization

derived with the defined distance in Sec. II-B.

A. Distance between electrodes

We define a distance between electrodes on the arrange-

ments used for EEG measurement. International 10-20, 10-

10, and 10-5 methods [8], [12], [13] have stood as the de-

facto standard of electrode arrangement. In these systems,

locations on a head surface are described by relative distances

between cranial landmarks over the head surface. Under an

assumption that the shape of head is a sphere, the locations

on head surface can be describe coordinates represented

by ξ = {x, y, z}. We define the coordinates such as the

axes of Fig. 1 that illustrates the electrode positions of the

international 10-20 method.

Given the positions of two electrodes as ξi = {xi, yi, zi}
and ξj = {xj , yj , zj}. The question arising here is: how to

define the distance between two points, on the head. The

Euclidean distance defined by di,j = ‖ξi − ξj‖ is a straight-

forward solution. In this paper, we define the perimeter of

a sector the two sides of which are line segments between

the origin and two electrode position on the coordinates as

the distance between two electrodes. Let φij be the angle

between the line segments between the origin and ξi, and

the origin and ξj . The distance by the perimeter is defined

as di,j = νφij , where ν = ‖ǫi‖ = ‖ǫj‖. Moreover, because

cosφ =
<ξi,ξj>

ν2
and ν = 1, dij = arccos(xixj+yiyj+zizj).

The metric is illustrated in Fig. 1. In the figure, we show the

distance between Fz and O1 as an example. The length of

the curve connecting Fz and O1 is the defined distance by

the metric.

B. Regularization

Consider a sensor array consisting of M sensors. A signal

sample observed in the ith channel at a time instance is

denoted by xi. A set, {xi}
M
i=1, forms a vector x defined as

x = [x1, . . . , xM ]T . We obtain dij for i, j = 1, . . . ,M as the

distances between sensors by the metric defined in Sec. II-

A. To mainly evaluate the regularization costs between each

sensor and its nearby sensors, the Gaussian metric between

two points;

gij = exp

(

−
d2ij

2p2

)

, (2)

is employed, where p denotes a parameter to tune the

closeness of the two sensors. Then we define the cost;

P (w) = Ex





M−1
∑

i=1

M
∑

j=i+1

gij |wixi − wjxj |
2



 , (3)

which evaluates the mean of squared error between weighted

signals observed in sensors that are located near each other,

Note that the cost (3) becomes small as the weighted signals

become similar in the nearby sensors.

Equation (3) can be transformed to matrix vector form as

P (w) = Ex[wTDx(C −G)Dxw] = wTQw, (4)

where C and Dx are diagonal matrices defined as [C]ii =
∑M

k=1
gik, [Dx]ii = xi, i = 1, . . . ,M, each element of

G ∈ R
M×M is defined as [G]ij = gij , i, j = 1, . . . ,M ,

and Q = Ex[Dx(C −G)Dx]. To take expectation over x

for obtaining Q, we can use the sample average of observed

signals.

III. CSP WITH THE SIGNAL SIMILARITIES BASED

REGULARIZATION

The CSP method [3], [4] is effective in feature extraction

and classification for two-class MI-BMI. In this section, we

first review the standard CSP method. Then, we exhibit how

to apply the regularization in described Sec. II for finding

CSP.

A. Common spatial pattern (CSP) [3], [4]

CSP is a set of spatial weights extracting a signal from

multichannel signals [3], [4]. The problem using labeled

training samples to design the spatial weights can be formu-

lated as follows. Let X ∈ R
M×N be a matrix representing

the observed signals, whereM is the number of channels and

N is the number of time instances. Denote the components

(vectors) of X by X = [x1, . . . ,xN ], where xn ∈ R
M and

n is the time index. CSP, w ∈ R
M , is found in such a way

that the variance of a signal extracted by linear combination

of X and w is minimized in a class [4]. The time variance

of the extracted signal of X is given by

σ2(X,w) =
1

N

N
∑

n=1

|wT (xn − µ)|2, (5)

where µ = N−1
∑N

n=1
xn. Let C1 and C2 be sets of the

training data. The set, Cd, contains the signals belonging to

class d, d represents a class label chosen in {1, 2}, and C1 ∩
C2 = ∅. We choose c as a class label and CSP is given

as the generalized eigenvector corresponding to the smallest
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Fig. 2. The artificial signals.

generalized eigenvalue of the generalized eigenvalue problem

described as

Σcw = λ(Σ1 +Σ2)w, (6)

where λ is the generalized eigenvalue, Σd are defined as

Σd = EX∈Cd

[

1

N

N
∑

n=1

(xn − µ)(xn − µ)T

]

(7)

for d = 1, 2, and EX∈Cd
[·] denotes the expectation over Cd.

B. Regularized CSP

By adding the regularization term given as (3), the modi-

fied regularized optimization problem is defined as

min
w
wT (Σc+γQ)w, subject to wT (Σ1+Σ2)w = 1, (8)

where γ is a combination coefficient. If the matrices of Σc+
γQ and Σ1 + Σ2 are nonsingular, (8) is equivalent to the

generalized eigenvalue problem:

(Σc + γQ)w = λ(Σ1 +Σ2)w. (9)

IV. EXPERIMENTS

We illustrate the ability of the proposed regularized CSP

method for extracting a local feature. The proposed method

is demonstrated with artificial signals in Sec. IV-A. Further-

more, the result of classification of real-world EEG signals

by spatially weighting of the proposed method is shown in

Sec. IV-B.

A. Artificial signals

An analysis of the proposed method by a toy experiment

with artificial signals is given. We used the mixture of

synthetic source and noise signals. We assume to know the

spatial distributions of the source signals. The spatial weights

derived by the CSP method and the regularized CSP method

were compared with the true distribution.

We assumed a 2-class BMI where observed EEG signals

are modeled by a mixture of narrow-band signals. In this

model, two signals, x1 and x2, belonging to class 1 and

class 2, respectively, are given by x1[n] = a1[n]s[n] + η,
and x2[n] = a2[n]s[n] + η, for n = 1, . . . , N , where

TABLE I

THE SETTINGS FOR GENERATING ARTIFICIAL SIGNALS

Parameter Value and distribution

Number of channels 118
Electrodes arrangement Int’l extended 10-20

Number of samples 512
Sampling frequency 512

Spectrum of the source signals Fig. 2(b)
Distributions Fig. 2(c)
Noise [η]m N (0, 0.1)
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Fig. 3. Topographical maps of the spatial weights that are as the
eigenvectors corresponding to the largest eigenvalues of (6) and (9) (c = 1
(left) and c = 2 (right)) in the experiment using the artificial signals.

x1[n],x2[n] ∈ R
M denote vectors representing a signal ob-

served at discrete time instance n, N denotes the number of

time instances,M denotes the number of channels, s[n] ∈ R

denotes a source signal of feature component, a1,a2 ∈ R
M

denote vectors defined by ai = [ai1, . . . , aiM ]T , aim ∈ R

denote an amplitude of the source at the mth channel for

class i, and η ∈ R
M denote a stochastic noise.

The simulation settings for generating artificial signals

were shown in Table I. The observed signal in 2 channels

are shown in Fig. 2(d).

The topographically plotted spatial weights given by by

the standard CSP and the proposed methods are shown in

Fig. 3. The parameters for the proposed method are 0.05 for

p and 108 for γ. Compared to the standard CSP, the weight

designed by the proposed method resulted in the large weight

coefficients concentrated at the certain spots. Moreover we

can observe in Fig. 3(b) that the topographical maps of the

spatial weights given by the proposed method are similar to

the true distribution maps shown in Fig 2(c).

B. Real-world EEG signals

We compared performance in a two-class classification

of EEG signals during motor imagery using the proposed

method to those using the standard CSP and the spatially

regularized CSP (SRCSP) [11], respectively.

1) Data description: We used dataset IVa from

BCI competition III (for details of the dataset, see

http://www.bbci.de/competition/iii/). This dataset consists of

EEG signals during right hand and right foot motor-

imageries. The EEG signals were recorded from five subjects

labeled aa, al, av, aw, and ay. The measured signal was

bandpass filtered with the passband of 0.05–200 Hz, and

then digitized at 1000 Hz.

Moreover, the lowpass filter whose cutoff frequency is

50 Hz was applied to recorded signals and the filtered signals

was donwsampled to 100 Hz. Furthermore, the signals were

bandpass filtered with the passband of 7–30 Hz that is a
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TABLE II

ACCURACY [%] GIVEN BY 100 TRAINING SAMPLES PER A CLASS.

Subject
aa al av aw ay Ave.

CSP 81.4 94.8 53.1 92.9 89.6 82.3
SRCSP 82.2 95.2 64.2 94.3 92.7 85.7

Proposed 82.0 95.4 66.2 94.6 93.0 86.3

band including mu and beta rhythms. The dataset for each

subject consisted of signals of 140 trials per a class. The

signal length for each trial is 3.5 seconds.

C. Features for classification

The following feature vector was used for classification.

In each case of c = 1 and c = 2, we solve (6) or (9), and

then we got the eigenvectors corresponding to the largest

eigenvalues in each eigenvalue problem defined by ŵ1 and

ŵ2, respectively. By using the weight vectors, the feature

vector was defined as y = [σ2(X, ŵ1), σ
2(X, ŵ2)]

T .

D. Results and discussions

Linear discriminant analysis [6] were used for classifying

the extracted feature vectors. For the proposed methods, we

used the signals that were observed in the intervals between

the tasks to form the regularization term (3) for each subject.

The classification accuracy was given by training for the

spatial weights and the classifier with randomly chosen 100

samples, and testing with the remaining samples. An average

accuracy over 100 times of this procedure is shown in in

Table II. The parameter in (2) were set to p = 0.05 for

SRCSP and the proposed method, The parameter was chosen

out of γ ∈ {100, 100.1, . . . , 1030}. The best accuracy among

the parameters for each subject is shown in Table II. In the

result of Table II, for aa, al, av, aw, and ay, γ were set to

109.4, 1012, 1011.1, 1010, and 1012.5, respectively, in SRCSP.

In the proposed method, γ were set to 109.9, 1014.3, 1012.7,

1011.1, and 1014.4, respectively. The both of the regularized

CSP slightly outperform the standard CSP method in the

classification accuracy for all subjects.

Table III also shows classification accuracy, however when

the number of the training samples is considerably reduced to

only five samples. As the same as in Table II, the parameters

performing the best classification accuracy were chosen out

of the candidates. For aa, al, av, aw, and ay, γ were set

to 1010.4, 1010.5, 1012.5, 1010.8, and 1011.4, respectively, in

SRCSP. In the proposed method, γ were set to 1013.6, 1013.5,

1016.9, 1013.9, and 1015.0, respectively. We can observe

significant improvement of the accuracy rates for subjects

al and ay by the regularizations. The results suggest that the

proposed regularization can improve the accuracy even if the

number of training samples available is small.

The topographically plotted spatial weights for subject ay

is shown in Fig. 4. All samples in the dataset were used

to find the spatial weights. The parameters of the proposed

method, p and γ, were set to 0.05 and 1015, respectively.

Comparing to the standard CSP, the electrodes which have

TABLE III

ACCURACY [%] GIVEN BY 5 TRAINING SAMPLES PER A CLASS.

Subject
aa al av aw ay Ave.

CSP 52.6 67.0 50.3 61.2 51.0 56.4
SRCSP 58.4 77.8 54.2 71.6 78.6 68.1

Proposed 59.2 81.3 54.4 71.3 79.3 69.1
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Fig. 4. Topographical maps of the spatial weights, ŵ
(1)
1 and ŵ

(2)
1 , for

subject ay in the experiment using the real-world EEG signals.

large coefficients do not be scattered spatially in the proposed

method.

V. CONCLUSION

We have proposed the regularization based on the simi-

larity of observed signals in the nearby sensors for feature

extraction problem in an EEG sensor array. Moreover, we

have illustrated how to apply the proposed regularization to

the CSP method. The experimental results demonstrated that

the proposed regularization improves classification accuracy

in a setting of the small number of samples.
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