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Abstract—Identifying lesions in the retinal vasculature 

using Retinal imaging is most often done on the green channel. 

However, the effect of colour and single channel analysis on 

feature extraction has not yet been studied. In this paper an 

adaptive colour transformation has been investigated and 

validated on retinal images associated with 10-year stroke 

prediction, using principle component analysis (PCA). 

Histogram analysis indicated that while each colour channel 

image had a uni-modal distribution, the second component of 

the PCA had a bimodal distribution, and showed significantly 

improved separation between the retinal vasculature and the 

background. The experiments showed that using adaptive 

colour transformation, the sensitivity and specificity were both 

higher (AUC  0.73) compared with when single green channel 

was used (AUC 0.63) for the same database and image 

features.    

I. INTRODUCTION 

Retinal vasculature, observed from non-invasive retinal 

imaging, has been shown to have a number of anatomic, 

physiological and embryological similarities in common 

with cerebral vasculature [1, 2]. The observable changes to 

retinal vasculature have been associated with various 

cardiovascular and metabolic diseases including stroke risk 

assessment [1, 2], and assessment of high blood pressure, 

diabetes, arteriosclerosis and other cardiovascular diseases 

[3]. Therefore, a number of automatic and semi-automatic 

retinal image analysis tools have been developed over the 

past 10 years [4] to improve the reliability and also make 

the procedure more robust and cost effective.  

Stroke has been reported as the third most common cause 

of mortality in adults after ischemic heart disease and 

combined cancer [5], and predicted to become the most 

common cause of death [1, 6]. There is an urgent need for 

methods that can accurately assess the risk of stroke. 

Currently used risk assessment methods such as 

Framingham‟s equation are based on Meta data and suffer 

number of shortcomings such as poor specificity. Recent 

work by Kawasaki et al [7] and Zul [8] have attempted to 

use automatic retinal image analysis using fractal analysis 

for risk assessment of Stroke incidence which resulted into 

sensitivity and specificity of 72.52% and 69.67% 

respectively. There is an urgent need for improving these 

outcomes for reducing the incidence of stroke. 

Automatic retinal image analysis requires the image 

quality to be good [9]. Presence of background and other 

noise, and light reflections can result in poor contrast and 
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such images are unsuitable for automatic analysis. So far 

colour retinal image analysis has been conducted only on 

the red-free or the green channel only [10] as it is generally 

accepted that the green channel provides the best vessel to 

background contrast while the red and blue channels are in 

most cases, noisy and have low contrast (Fig. 1) [11]. 

However it has been shown that it is not always sufficient 

for texture analysis and feature extraction using a single 

channel in complex images [12, 13]. Marrugo et al [14] 

have developed principle component analysis (PCA) based 

colour space method to segment the optical disk in retinal 

images, and Sinthanayothin et al [15] proposed to have an 

adaptive colour channel for retinal image analysis. 

However, this has not been significantly tested in clinical 

settings.  

In this paper, an adaptive colour transformation and 

feature extraction techniques has been used on the retinal 

images from the Blue Mountain Eye Study (BMES) 

database and tested for stroke prediction. In this study, 

thirty retinal images of participants who suffered stroke 

were analysed and compared with another thirty retinal 

images of matching control subjects. In this method PCA 

has been applied on RGB channels to find a new set of 

orthogonal axes based on the variance in the three colour 

channels. This method is comparable with the technique 

proposed in [16-18] for complex images. The significant 

contribution of this work is that it has shown the need for 

adaptive colour channel for different retinal images, and the 

significant improvement in stroke prediction.  

II. MATERIAL 

The Retinal images from a population-based study 

conducted in Blue Mountains, a suburban region west of 

Sydney, Australia, commonly referred to as Blue Mountain 

Eye Study (BMES), were analysed [19, 20]. The 

participant‟s age range was 60-89 years. All these images 

were obtained using a Zeiss FF3 fundus camera having 30 

degree field of view. The photographs were taken after pupil 

dilation. The images were digitized using a Cannon FS2710 

scanner with maximum resolution of 2720 dpi in 24-bit 

colour format. Among the total number of 1532 images 

available in our database, 104 images were of people who 

later suffered an episode of stroke. Eight of these images 

were discarded due to the poor quality. From these 96 

images, 30 cases were selected and matched to 

corresponding 30 controls based on the age, gender and 

history of hypertension and diabetes. Stroke cases were 

defined as participants who did not have history of stroke at 
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baseline (1992-94), but who developed incident stroke or 

died from stroke-related causes [21] over a 10 year time.  

III. METHODOLOGY 

PCA was performed on the RGB images to determine 

the most suitable colour vector that would provide the best 

features for further analysis. The image corresponding to 

this adaptively obtained colour vector was denoised using 

Gabor wavelet [11] and (GLCM) features were obtained 

[22].  Feature reduction was performed using Relief-F 

algorithm. Supervised classification was performed using 

support vector machine (SVM) on these feature set. For the 

purpose of comparison, the green channel image was 

analyzed exactly in the same way as the adaptive colour 

channel. The steps are described in detail below: 

A. Principal Component Analysis (PCA) 

PCA was used to transform the RGB axes to three new 

orthogonal principal axes. Consider an image; n×m×q, 

where n, m and q represent for the number of rows, 

columns and the RGB channels (q=3) respectively. The 

image matrix was reshaped to the new size of l×q where 

l=n×m. This matrix was then mapped into the PCA space. 

The output of this transformation formed a new set of image 

channels, also known as Eigenchannels [16]. The 

Eigenchannels were then reshaped back to size of the 

original image (n×m×q) as shown in Fig. 1. The values of 

the first Eigenchannel showed the maximum correlation of 

the data containing main structural features. The second 

one contained the texture features while the third 

Eigenchannel included uncorrelated noise. Inspection of the 

Eigenchannels and the corresponding histogram revealed 

that the second one had a bimodal histogram while the first 

and the third one had unimodal histograms (Fig. 2). Based 

on these results, the second Eigenchannel was found to be 

suitable for improved contrast and segmentation and was 

selected for further analysis.  

   
(a) (b) (c) 

   

(d) (e) (f) 
Figure 1: Original Image and the PCA Eigenchannels. a) R channel b) G 

channel c) B channel d) 1
st
 Eigenchannel e) 2

nd
 Eigenchannel f) 3

rd
 Eigen 

channel 

B. Multi-Scale wavelet decomposition 

The image obtained after PCA was filtered using the 

pyramidal multiresolution Gabor wavelet filter bank 

described by Oscar Nestares et al [23] with six levels and 

eight orientations. Unlike other pyramidal methods (i.e. 

Gaussian [24] and Laplacian [25]), there is no loss of 

information in the decomposition process in wavelet 

transform [26]. The reason for selection of six levels has 

been investigated in the result section (section IV) in terms 

of providing better accuracy, sensitivity, specificity and 

AUC.  The original image and the outputs at each level 

were convolved with even and odd symmetric Gabor 

wavelets at eight orientations resulting to even-odd images 

at each orientation. The particular spatial frequency and 

orientation responses were obtained by finding the 

Euclidean distance of the even-odd images at each level.  

C. Gray level co-occurrence matrices (GLCM) 

Gray level co-occurrence matrix (GLCM), proposed by 

Haralick et al. [22] in 1973 describe the texture of the 

image. It has been found to be suitable for texture retrieval 

and feature extraction and has been demonstrated by Doyle 

et al [27] to grade prostate cancer.  
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Figure 2: Histograms of original Image and the PCA Eigenchannels. a) R 

channel b) G channel c) B channel d) 1
st
 Eigenchannel e) 2

nd
 Eigenchannel f) 

3
rd

 Eigen channel 

 

The four common GLCM features of contrast, correlation, 

homogeneity, and energy were used in this study [28, 29]; 

These are based on the assumption that the texture 

information can be adequately derived by calculating the 

frequency of the occurrence of a pixel with gray-level value 

of “i” horizontally adjacent to a pixel with the value “j”. 

Using the notation and referencing format used in [22]:  
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where p(i,j) is the (i,j)th element in the GLCM matrix 

and µx, µy, σx and σy are the means and standard deviations 

of 
j

jipixp ),()(   and 
i

jipjyp ),()(  respectively. 

D. Feature Reduction 

The use of the six scales over eight orientation angles for 

the four GLCM measures, results in 192 (6×8×4) features 

for each image. A key issue prior to any machine learning 

and feature classification is to estimate the quality of 

attributes and find strong dependencies to other attributes 

[25]. Supervised learning and classification of high 

dimensional data can lead to over-trained system which will 

affect the classification performance [30]. High dimensional 

data also increases the computational complexity. It is 

important to identify the most suitable feature set that will 

provide the best separation between the different classes; the 

stroke cases and the controls.  

In this research, an extension of Relief algorithm, Relief-F 

[25], was used for feature selection and dimensionality 

reduction. This technique is suitable when the 

dimensionality is high and is also suitable for noisy datasets 

[26] which is the case in population based studies. The 

importance of each feature is defined in terms of a set of 

weights. The initialisation of weights is random and an 

iterative process determines the weights for each feature to 

maximise the distance between the two classes. Relief-F 

analysis on the data showed that three of the 192 features, 

the 63rd, 158th and 142nd features were recognized as most 

suitable and used for further analysis. 

E. Classification of clinical cases 

The features selected using Relief-F were classified using V 

Support Vector Machine (V-SVM) [31] into two classes; 

control and stroke patients. V-SVM has soft-margins and 

allows for classifying data where there is an overlap. The 

regularization parameters (V) determines the trade-off 

between the complexity of a support vector machine and the 

number of non-separable points and this was set to 0.1 

based on the leave one out error minimisation. 

F. Validation and performance Estimation 

In order to validate the classification performance, hold-out 

validation, ten-fold cross-validation and receiver operating 

characteristics (ROC) were used as the most common 

techniques. To compare the results with other works in 

literature, the three validations methods were performed. 

Hold-out validation was tested with the data randomly split 

into 70% training and 30% testing samples and repeated 10 

times. Ten-fold cross validation was performed to cross-

validate the results and remove any ambiguity due to the 

data selection during the hold-out validation. Ten-fold 

validation was done using two measures; „Leave one out‟ 

and “10 times, 10 fold” approach. Receiver Operating 

Characteristic (ROC) analysis was performed to find the 

area under the curve (AUC) for each of the above validation 

methods. ROC is a measure of predictive ability and 

reliability of the system. The analysis was conducted for the 

adaptive colour image proposed by this research and also 

for the green channel for comparison purpose.  

 

IV. RESULTS 

Table 1 illustrates the three cross validation performance 

namely „Hold-Out‟, 10 times-10 fold repeated analysis and 

„Leave-one-out Validations‟ for both PCA and green colour 

spaces. According to this table, the sensitivity, specificity 

and AUC of adaptive colour selection, was consistently 

better (0.73) than the green channel; for all validation 

techniques. The accuracy was defined as the proportion of 

true results to the whole population study.  Table 2 provides 

a comparison between the cross validation results for three 

different decomposition levels (four, five and six).The 

number of orientations was kept at 8 for all the levels. 
 

TABLE 1: CROSS-VALIDATION EVALUATION (PCA SPACE VS 

GREEN CHANNEL) 

Validation Method 
Hold-

Out 

10 Times 

10 Fold 

Leave One  

Out 

Accuracy 
PCA 0.738 0.733 0.733 

Green 0.670 0.627 0.567 

Sensitivity 
PCA 0.766 0.733 0.733 

Green 0.659 0.744 0.678 

Specificity 
PCA 0.711 0.733 0.733 

Green 0.681 0.500 0.457 

AUC 
PCA 0.738 0.733 0.733 

Green 0.736 0.684 0.630 

 

TABLE 2: CROSS-VALIDATION EVALUATION OF 

CLASSIFICATION RESULTS FOR DIFFERENT  

WAVELET SCALES (10-TIMEs-10 FOLD VALIDATION) 

 Accuracy Sensitivity Specificity AUC 

Gabor Level 4 0.616 0.633 0.600 0.616 

Gabor Level 5 0.433 0.241 0.612 0.429 

Gabor Level 6 0.733 0.733 0.733 0.733 

V. DISCUSSION AND CONCLUSION 

This paper reports an adaptive technique to select the colour 

channel of the eye-fundus images. The proposed technique 

has been tested using 10-year stroke data to predict the 

incident of stroke events. The technique determines suitable 

colour channel for the highest contrast by performing PCA 

on the RGB channels. GLCM was used as measure of the 

image texture and four features of contrast, correlation, 

homogeneity and energy were generated at each wavelet 

scales. Feature reduction was performed using ReliefF on 

the 192 GLCM features and the three most suitable features 
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from this set were identified for each image. These features 

were then classified using V-SVM supervised classifier.  

This study has shown that when adaptive colour channel 

is used, the classification results are better (0.733) than 

when sole green channel is used (0.63). The results obtained 

from green channel had AUC of 0.63, which was similar to 

the work by Kawasaki et al [7]. However, the results of 

adaptive colour space showed a significant improvement, 

with the AUC being 0.73. This would make the system 

more attractive for clinical deployment. The results were 

validated using hold-out, 10-times 10-fold and leave one out 

validation techniques. Accuracy, sensitivity, specificity and 

ROC were measured for these validation techniques and all 

of them showed a significant improvement when adaptive 

colour channel was used. With the improved accuracy, 

specificity, and sensitivity; eye fundus imaging may now be 

more applicable for clinical applications.  
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