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Abstract— To identify glaucoma type with OCT (optical
coherence tomography) images, we present an image processing
and machine learning based framework to localize and classify
anterior chamber angle (ACA) accurately and efficiently. In
digital OCT photographs, our method automatically localizes
the ACA region, which is the primary structural image cue
for clinically identifying glaucoma type. Next, visual features
are extracted from this region to classify the angle as open
angle (OA) or angle-closure (AC). This proposed method has
three major contributions that differ from existing methods.
First, the ACA localization from OCT images is fully automated
and efficient for different ACA configurations. Second, it can
directly classify ACA as OA/AC based on only visual features,
which is different from previous work for ACA measurement
that relies on clinical features. Third, it demonstrates that
higher dimensional visual features outperform low dimensional
clinical features in terms of angle closure classification accuracy.
From tests on a clinical dataset comprising of 2048 images, the
proposed method only requires 0.26s per image. The framework
achieves a 0.921 ± 0.036 AUC (area under curve) value and
84.0% ± 5.7% balanced accuracy at a 85% specificity, which
outperforms existing methods based on clinical features.

I. INTRODUCTION

Glaucoma is a group of heterogeneous optic neuropathies
characterized by the progressive loss of axons in the optic
nerve. Data from the World Health Organization shows that
glaucoma accounts for 5.1 million cases of blindness in
the world and is the second leading cause of blindness
worldwide (behind cataracts) as well as the foremost cause of
irreversible blindness [1]. As illustrated in Fig. 1, glaucoma
is classified according to the configuration of the angle (the
part of the eye between the cornea and iris mainly responsible
for drainage of aqueous humor) into open angle (OA) and
angle-closure (AC) glaucoma.

Primary angle closure glaucoma (PACG) is a major form
of glaucoma in Asia [2] compared to primary open angle
glaucoma (POAG), which is more common in Caucasians
and Africans [3]. PACG is already responsible for the ma-
jority of bilateral glaucoma blindness in Asia, which will
affect 20 million people. Previously reported anatomical risk
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Fig. 1. Open angle (OA, top) and angle-closure (AC, bottom).

factors for angle closure include a shallow central anterior
chamber depth (ACD), a thick and anterior lens position
and short axial length (AL) [4]. Amongst these, a shallow
ACD is regarded as a sine qua non (cardinal risk factor)
for the disease. However, population based data suggest
that only a small proportion of subjects with shallow ACD
ultimately develop PACG [5]. Therefore, it is likely that other
ocular factors relate to PACG development and need to be
discovered.

In previous work, automated glaucoma type classification
has been studied in different image modalities. A BIF feature
based learning method was proposed for color RetCam
images [6]. An edge detection and line fitting approach was
proposed for ACA measurement [7] in ultrasound biomi-
croscopy (UBM) images. Similarly, a segmentation, edge
detection and linear regression based approach was proposed
for ACA assessment in OCT images [8].

In this work, we study ACA localization and classification
for glaucoma type identification in OCT (optical coherence
tomography) images, which has the advantages of being non-
invasive and non-contact [9] compared to UBM. An OCT im-
age captures a cross-section of the eye as a grayscale image,
and several features (as illustrated in Fig. 2) are extracted
based on ACA measurement such as AOD (angle-opening
distance) [7], [8], TIA (trabecular-iris angle) [10], TISA
(trabecular–iris space area) [8], [10] and SLBA (Schwalbe’s
line bounded area) [11]. In practice, these clinical features are
used for angle closure assessment, i.e., ACA classification.

ACA detection in OCT images can be relatively straight-
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Fig. 2. Features used for ACA measurement clinically. Please refer to the
color print for better viewing.

forward since the images are generally clean and are approx-
imately aligned during image acquisition process. However,
ACA classification is a challenging task since there are
intermediate cases that are difficult to classify as AC or OA
using the same clinical features, even for human experts.
From our image classification experience, the use of only
one or two dimensional clinical features is insufficient to
achieve good performance, since the eigen dimension of this
problem might be much higher, as observed clinically [5].

In this paper, we propose an image processing and learn-
ing based framework for efficient ACA localization and
classification. With the proposed framework, other existing
visual features and learning algorithms can be introduced to
improve performance in the future.

II. ANGLE CLOSURE CLASSIFICATION

To classify an ACA as open or closed, a natural solution is
to follow the method of a human expert. Generally, as shown
in Fig. 3, for a given OCT image, the ACA region needs to
be localized accurately at first, and then certain features and
criteria are used to identify whether it is closed.

A. ACA localization

In previous work, the ACA regions are marked manually
[10] or are automatic determined by using edge detection [7].
For efficiency, we adopt a coarse-to-fine scheme to localize
the ACA from input OCT image, which first segments
a candidate ACA region and then localizes its vertex for
alignment. The steps are shown in Fig. 3. First, a 400× 400
region of interest (ROI) covering the exact ACA is cropped
out at a fixed position from the 834 × 900 input image;
second, the ROI is quantized to a binary image (0 for black
and 1 for white) using a small valued threshold in order to
preserve more details of the angle (a large/adaptive threshold
will lose more details at the extreme end of the ACA,
which is very important for classification); third, a mor-
phological operation is performed to remove isolated noise
points; fourth, weighting and connected component labeling
segmentation (CCLS) [8] algorithm are used to segment the
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Fig. 3. Flowchart of the proposed ACA localization and classification.

ACA candidate in the ROI; fifth, a post processing step is
applied to remove other components connected to the exact
ACA in the candidate region; lastly, the ACA is localized
with an n× n bounding box centered at its detected vertex.
For further details, readers are referred to our recent work
[12].

B. ACA feature representation and classification
Each ACA region is represented by a n × n image,

which can be grayscale, binary and/or edges of the ACA.
Many existing features from computer vision can be used
for classification, such as HOG [13] and BIF [6] which are
related to edges and textures, respectively.

In this work, we use the histogram equalized pixel (HEP)
values as a feature that is effective and computationally
efficient. This is motivated by the intensity of a pixel being a
natural feature [14] to classify whether it is on a closed angle.
However, using all the pixels in the n×n region will generate
features that are too high dimensional and may also introduce
too much noise. Therefore, we downsample the image to
reduce the feature dimension. The additional quantization
with fewer bins before downsampling enhances the contrast
between pixels and provides more distinguishable features.

As illustrated in Fig. 4, the n × n grayscale image of
ACA is first enhanced by quantizing to 8 bins, and then
downsampling to d×d(d < n), so that the vectored image f
is the HEP feature. For efficiency, the simple linear SVM
classifier is employed, with a weight vector ω trained to
estimate the class label y (+1 for AC and -1 for OA) of
a given feature vector f , according to y = ωT f . In the
experiments, we use the LIBLINEAR toolbox [15] to train
the SVM models.

III. EXPERIMENTS

A. Experimental setup
Our approach is implemented with Matlab and tested on

a four-core 3.4GHz PC with 12GB RAM. A total of 2048
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Fig. 4. ACA feature representations (left top to right bottom): binary,
grayscale, histogram equalized and HEP.

images are used for the experiments. The images are from
8 circular scan videos of 8 patient eyes with glaucoma, 4
of them with PACG and other 4 with POAG. Each video
contains 128 frames, and each frame is split into 2 images
since it contains two angles and the right angle image is
flipped horizontally.

The experiments are based on each single image, which
is labeled as AC or OA by three ophthalmologists from
a hospital. For the classification evaluation, we follow the
widely used leave-one-out (LOO) method, i.e., for each
testing round, 512 images from one PACG and one POAG
patients are used for testing while others are used for training,
thus 16 rounds are performed to test all cases.

We assess the performance using a balanced accuracy with
a fixed 85% specificity and area under ROC curve (AUC)
which evaluates the overall performance. The balanced ac-
curacy (P̄ ), sensitivity (P+) and specificity (P−) are defined
as

P̄ =
P+ + P−

2
,

P+ =
TP

TP + FN
,

P− =
TN

TN + FP
,

(1)

where TP and TN denote the number of true positives and
negatives, respectively, and FP and FN denote the number
of false positives and negatives, respectively.

B. Comparison of ACA classification

In this section, we compare classification methods with
several visual features (i.e., BIF [6], HOG [13] and HEP)
with different ACA region sizes (n = 100, 150, 200) and
two clinical features (i.e., AOD [8] and SLBA [11]). For the
HEP feature extraction, d is set to 20 for efficiency reasons.

Fig. 5. Performance comparison in terms of AUC (top) and balanced
accuracy (bottom).

For HOG and BIF feature extraction, the ACA is divided
into 5× 5 cells; 2× 2 cells form a block for HOG, and 22
feature maps are used for BIF. From the results shown in
Fig. 5 and Table I, we have the following observations:

1) The visual feature based methods outperform the clin-
ical feature based ones, demonstrating that high di-
mensional visual features provide more information for
classification and thus leading to higher performance.
In addition, the performance drops significantly in
some videos that contains a lot of intermediate cases
which are difficult to classify even for human experts.

2) Among visual feature based methods, the simplest HEP
features outperform HOG and BIF features. A possible
explanation is that HOG features introduces noise and
BIF is not very suitable for grayscale images.

3) Comparing methods based on the HEP feature with
different ACA size n, the results are relatively stable,
and the largest AUC is obtained when setting n = 150,
which was found to be not too small to lose useful
information nor too big to introduce too much noises.

We also observed that histogram equalization can lead
to about 2–3% relative improvement of AUC compared
to downsampling only. In terms of processing speed, each
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TABLE I
PERFORMANCE COMPARISONS OF ACA CLASSIFICATION WITH DIFFERENT FEATURES

Feature HOG BIF HEP AOD SLBA
n 100 150 200 100 150 200 100 150 200 – –

AUC
0.865
±0.058

0.847
±0.063

0.882
±0.054

0.877
±0.054

0.872
±0.078

0.821
±0.080

0.899
±0.059

0.921
±0.036

0.914
±0.045

0.745
±0.166

0.697
±0.108

P̄ (%)
76.2
±7.6

76.0
±5.6

78.5
±6.6

79.3
±7.1

76.8
±11.0

73.6
±8.5

80.2
±9.9

84.0
±5.7

84.2
±6.0

63.9
±11.7

62.1
±7.5

Y

X

Fig. 6. The learned average weight matrix.

ACA represented by a 400-dimension feature costs about
0.06s for feature extraction and classification with a Matlab
implementation, which can be further accelerated with a C++
implementation.

In addition, we found a way to further reduce the feature
dimension without significant reduction of accuracy. As
shown in Fig. 4, with the proposed ACA localization, each
ACA is aligned with its vertex at the center, and then the
exact ACA should fall into quadrant 1; however, some ACAs
are misaligned since the exact vertex of an ACA is very hard
to distinguish when that region is blurred. In this case, the
extreme ends of some ACA corners fall into quadrant 3,
especially for closed ones. Thus we suppose that quadrant 1
and 3 may provide sufficient information for classification,
which is supported by experiments. The average weight
vectors ω̄ we obtained in the testing are illustrated in Fig. 6;
for each dimension (shown as a block), a higher weight
corresponds to a lighter color. One can observe that most
of the dimensions with highest weights (in white) are in
quadrant 1 and 3, as expected. Thus the performance of using
all of the d× d pixels was compared with only using pixels
in quadrants 1 and 3, the AUC reduction is less than 0.3%
with a half dimension reduction.

IV. CONCLUSION

For glaucoma type identification, an image processing and
machine learning based framework was proposed to localize
and classify ACA accurately and efficiently, based on visual
features only. We tested our method on a clinical dataset
comprised of 2048 images with two evaluation criteria. The

results show that it outperforms clinical feature based meth-
ods, achieving a 0.921±0.036 AUC value and 84.0%±5.7%
balanced accuracy (P̄ ) at a 85% specificity (P−), while only
requiring 0.26s per image. In future work, we plan to extend
the classification framework to multiple level angle closure
grading, in order to improve precision and better deal with
intermediate cases.
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