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Abstract- Retinal capillary abnormalities include small, 
leaky, severely tortuous blood vessels that are associated with 
a variety of retinal pathologies. We present a prototype image­
processing system for detecting abnormal retinal capillary 
regions in ultra-widefield-of-view (UWFOV) fluorescein angiog­
raphy exams of the human retina. The algorithm takes as 
input an UWFOV FA frame and returns the candidate regions 
identified. An SVM classifier is trained on regions traced by 
expert ophthalmologists. Tests with a variety of feature sets 
indicate that edge features and allied properties differentiate 
best between normal and abnormal retinal capillary regions. 
Experiments with an initial set of images from patients showing 
branch retinal vein occlusion (BRVO) indicate promising area 
under the ROC curve of 0.950 and a weighted Cohen's Kappa 
value of 0.822. 

I. INTRODUCTION AND MOTIVATION 

We present a prototype software system detecting ab-

examples of dilated capillaries are typically in acute BRVO, 
whereas the telangiectasias are present only in chronic 
BRVO. 

normal retinal capillary regions in ultra-wide-field-of- view Fig. 1. Extract of a UWFOV frame with telangiectatic regions outlined in 
(UWFOV) fluorescein angiography (FA) exams of the human white. 
retina. 

The abnormality we focus on is telangiectasia. Retinal 
telangiectasias are retinal vascular anomalies characterized 
by severe tortuosity and incompetence, as shown in Figure 1. 
They occur in association with diseases such as chronic 
retinal vein occlusion and Coats disease among others [12], 
[13]. In this study, we focus on telangiectasias secondary to 
branch retinal vein occlusion (BRVO). Branch retinal vein 
occlusion is a common cause of vision loss, usually affecting 
middle-aged and elderly vasculopathic patients. The 15-year 
cumulative incidence of BRVO was 1.8% in the Beaver Dam 
Eye Study [14]. Important mechanisms of vision loss in 
BRVO include macular edema and complications secondary 
to ischemia [15], [16]. Indeed, telangiectasias are often found 
adjacent to areas of frank retinal nonperfusion. Automated 
detection and quantification of this important feature has the 
potential to enhance primary care screening applications and 
aid in the management of this disease by specialists. 

BRVO can also be associated with dilated capillaries, 
which should be distinguished from telangiectasias. Dilated 
capillaries and telangiectasias have vessels of similar caliber 
and both leak. However, in contrast to telangiectasias, dilated 
capillaries are not tortuous and the regular vascular branching 
pattern of these pre-existing vessels is intact. The clearest 

Telangiectasias should also be distinguished from neovas­
cularization. Both are tortuous, leaky vessels that result from 
BRVO. However, neovascularization grows into the vitreous, 
whereas telangiectasias are intraretinal. 

We propose a novel automatic telangiectasia detector, 
designed and tested on UWFOV FA images. The proposed 
algorithm uses a combination of edge contour analysis and 
support vector machine (SVM) to classify between telang­
iectatic and non-telangiectatic regions. 

Fig. 2. Example UWFOV FA frame captured using Optos P200MAAF 
200Tx scanner. 
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II. RELATED WORK

Work on automatic retinal image analysis has grown

dramatically in the last 20 years [1], [7], but, to the authors’

best knowledge, no authors have addressed the automatic

detection of telangiectasia.

Previous work on automated detection of telangiectasia

in clinical images has been reported in the dermatology

literature for the detection of basal cell carcinoma (BCC).

For instance, Cheng et al. [2] trained a neural network

on 212 dermoscopy images containing telangiectasia, 59

of which contained BCC and the remaining 152 contained

benign lesions, with 30 features comprising shape and size

descriptors. The authors report an area under the ROC curve

of 0.967, when tested on a ground truth set constructed by

a single annotator.

Other work in the area of detecting abnormal capillaries in

retinal images is described in [18], where neovascularization

is detected by training a neural network on a dataset of 23

fundus camera images of patients suffering from diabetic

retinopathy, reporting an area under the ROC of 0.84. Hes-

san et al. [19] also describe a neovascularization detection

algorithm designed for colour fundus images, applying nor-

malization, classification and morphology based techniques

to achieve a specificity of 89.4% and sensitivity of 63.9%.

Although telangiectasia may have a similar appearance to

early neovascularization, medical context is often used to

differentiate between the two, which is out of the scope of

the reported algorithm.

In this paper, we utilize Optos UWFOV exams

(Optomap R©), capturing a 200 degree field of view of the

back of the eye, including the retinal periphery. In contrast,

traditional imaging modalities cover only 30–50 degrees

around the optic disc or macula. An example UWFOV FA

frame can be seen in Figure 2. Some literature exists on

automatic UWFOV FA image analysis. Perez-Rovira et al.

[9] describe an algorithm for deformable image registration

developed for UWFOV FA frames. The algorithm aligns

the frames in an FA sequence by detecting vessel segments

and bifurcation points using steerable filters, then iteratively

warps and aligns the segments in neighbouring frames to

create the final registered sequence. Trucco et al. [8] report

work on the automatic detection of ischemia in UWFOV

FA sequences, presenting a prototype system that uses the

AdaBoost [10] algorithm trained with features composed

of pixel intensity time-profiles, matched filters, and shape

analysis.

This paper brings two main contributions. First, to our

knowledge, it is the first report of automated detection of

retinal telangiectasias. Second, it is among the first to utilize

Optos fluorescein angiography for automated retinal imaging

analysis. The medical benefit of this modality has been well

documented [3] [4] [5] and its use is becoming part of

standard care in many centers.

We propose a novel automatic telangiectasia detector,

designed and tested on UWFOV FA images. The proposed

algorithm uses a combination of edge contour analysis and

support vector machine (SVM) learning to detect regions

with telangiectasias.

III. METHODS

A. Image Capture

The fluorescein angiographic images of five patients from

the practice of JPH with clinical diagnosis of chronic

ischemic BRVO were selected. These patients underwent

fluorescein angiography using a standard protocol. After in-

travenous injection of fluorescein, the sequential fluorescein

angiographic images were captured for more than 10 minutes

by certified ophthalmic photographers in the Photography

section at Jules Stein Eye Institute, UCLA, Los Angeles,

CA. Ultra-wide field retinal imaging (of about 200 degrees or

80% of the retina) was performed using Optos P200MAAF

200Tx (Optos Inc., Marlborough, MA, USA) panoramic

scanning laser ophthalmoscope. The images had a resolution

of 3900x3072 pixels and were saved as grayscale images in

bitmap format. An example is shown in Figure 2.

B. Image Annotation

The ground truth (GT) was provided by the clinical authors

from the Jules Stein Eye Institute, UCLA. A medical expert

traced the contour of telangiectatic regions using Adobe

Photoshop CS4 Extended Version 11.0.2 (Adobe Systems,

San Jose, CA, USA). Images in the arteriovenous phase be-

fore significant leakage developed were chosen. The selected

images had good quality and focus extending to periphery,

with minimal image artifacts (e.g. eyelashes).

C. Image Analysis Algorithm

The systems architecture is shown in Figure 3. It works

by performing Canny edge extraction at multiple scales

within a sliding window approach. At each scale, the edge

image is split into patches, and the edge attributes computed

within each patch. The resulting feature vectors yield a

9 dimensional representation of each patch. Ground truth

annotations from clinicians are used to train an SVM [11]

classifier.

The input frame used for analysis is selected as the

middle frame of the FA sequence, as this results in a frame

with widespread perfusion before any vascular leakages are

exhibited. A standard Matlab implementation of the Canny

edge detector is applied to the input FA frame, resulting in

a binary edge image (Figure 4). The figure illustrates the

very different spatial distribution of edges generated by the

altered appearance of the vessel network in telangiectatic

region compared to normal regions. This fact is exploited in

the feature vector used in our system.

We divide the binary edge image into overlapping 100×

100 pixel patches (the optimal patch size was chosen from

experiments). Our results showed that a 10% patch overlap

was the optimal choice as a trade-off between feature extrac-

tion time, classifier training time, and accuracy. 8-connected

component analysis was performed to separate individual

edge segments. In each patch, the average length of each

segment and the number of edge segments is recorded. We
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Fig. 3. System architecture at a glance. 

also compute the angle along each edge segment, by fitting 
polygons to three neighbouring sub-sampled points along 
each edge segment. This process is repeated at three spatial 
scales of Canny edge detection, by varying the ~ parameter 
(standard deviation) of the Gaussian filter. Our experiments 
concluded that the set of values ~ = 1,3,5 was sufficient to 
achieve good results. 

Fig. 4. Canny edge response with telangiectatic region (left) and healthy 
region (right) highlighted. 

We used the LibSVM [6] Matlab SVM library for classi­
fication. We apply the radial basis function kernel (RBF), 
which gave the best results over linear and polynomial 
kernels in our experiments. We used a grid search for 
optimal parameter selection. The optimal combination of 
both parameters can be found by iteratively training and 
testing the classifier after varying the Cost and Gamma 
parameters, in our case 152 for Cost and 4.75 for Gamma. 
A total of 11887 patches, represented by the 9 dimensional 
feature vector (3 features at 3 scales), were then used to train 
the SVM classifier. 

IV. RESULTS 

The n-fold cross validation technique was used to train 
and test the algorithm. The method consists of combining 
all the feature data (patches), and then splitting these into a 
random number n (n=lO for our tests) of subsets. The SVM 

classifier is then evaluated a total of n times, each time being 
trained with n -1 sets, and tested with the remaining set. For 
our tests, we balanced the number of positive and negative 
training examples, resulting in the use of 11887 patches, out 
of the total 131269 patches extracted from the five images 
in our dataset. 
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Fig. 5. A ROC curve showing the performance of our algorithm in terms 
of sensitivity vs specificity. Solid line is tangent to the ROC in the optimal 
operating point. The dashed line represents random chance results. The area 
under the curve (AUC) is 0.950. 

Prediction - Healthy 

Prediction - Telangiectatic 

GT-Healthy GT-Telangiectatic 

91.54 8.46 

9 .38 90.62 

TABLE I 

CONFUSION MATRIX SHOWING THE PERCENTAGE OF TRUE NEGATIVE, 

FALSE NEGATIVE, FALSE POSITIVE, AND TRUE POSITIVE RESULTS OF 

ANNOTATED GROUND TRUTH (GT) VERSUS THE PROPOSED 

ALGORITHM'S PREDICTION. 

A Receiver Operating Characteristic (ROC) curve of our 
algorithms performance, created by varying the threshold 
value on the decimal output of the SVM classifier from -
10.9 (100% Sensitivity) to 7.0 (100% Specificity), can be 
seen in Figure 5 - it has an area under the curve of 0.950. 

We take the optimal operating point as the tangency 
point of the curve with a line of a slope 1 (solid line in 
Figure 5), as the optimal compromise between sensitivity 
and specificity. At the selected operating point the algorithm 
achieves a true negative rate of 91.54% and a true positive 
rate of 90.62%, shown in Table I. We report no comparative 
tests as we are not aware of any other telangiectasia detectors. 

As well as carrying out 10-fold cross validation as de­
scribed above, we also evaluated the algorithm's performance 
with a leave-one-out approach, by iteratively training on the 
feature vectors extracted from 4 images, while testing with 
the remaining image. The SVM parameter search was re-run 
to generate the optimal configuration for the new dataset, 
yielding a value of 25 for Cost and 0.2 for Gamma. A 
confusion matrix of the reported results can be seen in Table 
II. Although we observed a small decrease in accuracy with 
this approach, we attribute this decrease to the small dataset 
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used for these tests, since a single image contributes a large 
part of the overall training data (conditional on the size of 
the lesion in that image). 

Prediction - Healthy 

Prediction - Telangiectatic 

GT- Healthy 

86.71 

12.53 

TABLE II 

GT- Telangiectatic 

13 .29 

87 .47 

CONFUSION MATRIX SHOWING THE TN, FN, FP, AND TP ALGORITHM 

RESULTS WHEN TESTED WITH THE LEAVE-ONE-OUT METHODOLOGY. 

V. CONCLUSIONS AND FUTURE WORK 

To our best knowledge, we have reported the first al­
gorithm for the automatic detection and segmentation of 
telangiectatic regions in retinal UWFOV FA exams. This 
work is also a component of a larger system, under devel­
opment in our group, to detect branch retinal vein occlusion 
and characterize its features, including retinal ischemia and 
macular edema. Early results are promising and further tests 
with a larger ground truth dataset are planned. 

Qualitative analysis of the results show a constant false 
positive classification on the optic disc region, though this 
can be easily discarded by an optic disc detector [ 17]. 
Our experiments also showed that when the algorithm was 
trained on the frame chosen by the annotators, not simply 
the middle frame of the sequence as currently used by our 
system, accuracy was greatly improved with an AUC value 
of 0.979 and a weighted Cohen's Kappa score of 0.885. This 
observation will motivate future work into the development 
of a more sophisticated frame selection method. 
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