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Abstract— Digital cytology plays an increasingly important
role in breast cancer diagnosis. However, analysis of cytologic
images is a very difficult task. Especially, nuclei segmentation is
extremely challenging. In our work on fully automated medical
diagnosis system we encountered the problem of densely clus-
tered nuclei. We decided to use a segmentation algorithm that is
rather rarely found in the literature. Multi-label fast marching
was applied and compared to well-known and extensively used
seeded watershed algorithm. In both methods, it is critical to
determine the appropriate starting points (seeds). The seeds
were determined using a combination of adaptive thresholding
in grayscale, clustering in color space and conditional erosion.
The proposed segmentation procedure was tested for suitability
for diagnosis of the cancer. Experiments were conducted on a
set of 450 microscopic images of fine needle biopsies obtained
from patients of the Regional Hospital in Zielona Góra, Poland.
The images were classified as either benign or malignant using
84 features extracted from isolated nuclei. Both methods gave
very promising results and showed that our method is effective
and can be successfully applied for computer-aided diagnosis
system.

I. INTRODUCTION

Breast cancer is the most common cancer among women.
According to the International Agency for Research on Can-
cer, in 2008 there were 1,384,155 diagnosed cases of breast
cancer and 458,503 deaths caused by the disease worldwide
[1], [2]. The effectiveness of treatment largely depends on the
timely detection of the disease. An important and often used
diagnostic method is the so-called triple-test. The triple-test
is based on 3 medical examinations. It includes self examina-
tion (palpation), mammography or ultrasonography imaging,
and fine needle biopsy (FNB) [3]. In FNB, the material
is collected directly from the tumor and examined under
a microscope. This approach requires extensive knowledge
and experience of the cytologist. Computer-aided diagnosis
can assist the specialist and help make the results objective.
Along with the development of advanced vision systems and
computer science, quantitative cytopathology has become a
useful method for detection of diseases, infections as well as
many other disorders [4], [5], [6].

Nuclei segmentation is the key functional component of
the computer-aided cytology. Many authors have reported
problems with a segmentation of clumped and overlapped
nuclei [7], [8]. Segmentation errors introduced by the clus-
tered nuclei give a significant distortion in nuclei features.
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Eventually, this results in low classification accuracy. Seeded
watershed (SW) algorithm is often used to handle this
problem [9]. We proposed the alternative solution based on
the fast marching algorithm. It is usually applied to tissue or
organ segmentation, while rather rarely used to segmentation
of cytologic images. The classical algorithm is designed to
background-foreground segmentation and can not be directly
employed to extract nuclei. In order to segment multiple
objects we used multi-label fast marching (MLFM) [10].
MLFM and SW were then compared in terms of their
suitability for breast cancer diagnosis.

The paper is divided into 4 sections. Section I presents an
introduction into breast cancer diagnosis. Section II describes
segmentation methods. Section III shows the experimental
results. Finally, section IV delivers our conclusions.

II. NUCLEI SEGMENTATION

On cytologic images nuclei often create clusters, overlap
each other, their boundaries are not clear and their interiors
are not uniform. In our previous works we have already
developed methods able to extract nuclei from cytologic
images [11], [12], [13], [14]. However, some clustered nuclei
were not properly segmented. To cope with this problem,
we propose extended segmentation procedure. Firstly, hy-
brid method based on adaptive thresholding and k-means
clustering is used to discover nuclei region. Next, conditional
erosion is applied to binary image of nuclei to localize nuclei
markers. Finally, nuclei are segmented using MLFM or SW.
Fig. 1 presents sample segmentation obtained using both
methods.

A. Nuclei Marker Extraction

The procedure starts from converting the original RGB
image into the binary image representing nuclei region. This
is done using adaptive thresholding and k-means clustering.
Adaptive thresholding is applied to distinguish objects (i.e.
nuclei, cytoplasm and red blood cells) from the background.
Threshold is calculated adaptively for subsequent pixels of
the image using averaging filter.

In the next step, k-means clustering [15] is applied to dis-
tinguish nuclei from the rest of the objects. In the considered
case, 3 clusters are defined. The clusters correspond to nuclei,
red blood cells and cytoplasm. The clustering procedure is
carried out in the RGB color space on the subset of pixels
provided by adaptive thresholding. The cluster corresponding
to the nuclei is determined based on the fact that nuclei are
the darkest objects in the image. Next, pixels that belong to
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Fig. 1. Input image (a), conditional erosion (b), MLFM (c), SW (d).

the nuclei cluster are used to construct binary image BW .
It marks regions in the image where the nuclei are located.

A key stage of nuclei marker extraction is to correctly
detect nuclei centers. The method is based on the concept of
conditional erosion [9]. Procedure assumes that the erosion
is conducted as long as the size of the processed nucleus is
large enough. Two masks for erosion operation are designed.
They can be referred as fine and coarse erosion structuring
elements. The coarse erosion tends to remain the actual shape
but reduces the size of clustered nuclei. This can make
the nucleus to disappear because of huge reduction in the
size. On the other hand, fine erosion structuring element
is less likely to make the nucleus disappear, but it will
lead to the loss of original shape. Conditional erosion is
applied to binary image BW obtained in the previous step.
Threshold T1 for coarse structuring element Bc and threshold
T2 for fine structuring element Bf are chosen experimentally
(T1=350, T2=50). Next, nuclei are iteratively eroded using
coarse element until the size of all objects is smaller than
T1. Finally, erosion with fine element is applied iteratively
to the results obtained during coarse processing. Structuring
elements Bc and Bf are designed according to the shape of
the nuclei which is similar to an ellipse. Objects that have
survived the conditional erosion are the markers M used to
seed MLFM and SW methods.

B. Multi-Label Fast Marching

Fast marching method is a special case of the level sets
approach for monotonically advancing fronts [16]. Algorithm
starts with the initial front Γ0. Next the front Γ evaluates with
speed F (x, y) in the normal direction where F is always
either positive or negative. Front passes through a point (x, y)
at the time T (x, y). Under this formulation the arrival time
function T (x, y) satisfies the Eikonal equation:

|▽T |F = 1. (1)

In order to solve the equation, the gradient |▽T | is estimated
using upwind entropy-satisfying scheme. By limiting our
considerations to two-dimensional grid, we must solve the
following quadratic equation:

1/F 2
i,j = max

(
max(d−x

i,j T, 0),−min(d+x
i,j T, 0)

)2
+

max
(
max(d−y

i,j T, 0),−min(d+y
i,j T, 0)

)2
,

(2)

where d− and d+ are backward and forward difference
operators.

The algorithm constructs the narrow band around the
initial front and next marches this band forward, freezes
the values of existing points and brings new ones into the
narrow band. The procedure is repeated until the narrow band
is empty. The behavior of the front is driven by the speed
function F . It must be designed in a way that the front stops
exactly at the boundary of the nuclei. We decided to use
speed function based on the image local gradient:

F = e−α|▽(Hσ∗I)|, (3)

where α is a weighting factor, I is the original image and
Hσ is a Gaussian smooth operator.

Standard fast marching is well suited to foreground-
background segmentation. Nevertheless, our application must
deal with multiple objects. It was realized by using MLFM
method [10]. It is initiated by the seeds corresponding to
nuclei marker centers. Each seed is associated with the
unique label (segment). Propagation speed is the same for
all labels. The algorithm maintains single narrow band which
contains trial points from all segments. New label for trial
point is inherited from the segment that propagates at the
current algorithm iteration. In order to prevent leakages of
the nuclei segments into background and to reduce com-
putational costs all points classified as background by the
adaptive thresholding and k-means are excluded from the
fast marching propagation.

C. Seeded Watershed

The classical watershed algorithm used for nuclei seg-
mentation tend to create many micro-segments. Such over-
segmentation makes the results of the watershed method
completely useless. To deal with this problem we used SW
method, a well-known extension of watershed algorithm [9].

Firstly, the topographic surface TS (intensity map) is
determined. TS is generated by the Euclidean distance
transform of the binary mask of nuclei BW obtained by
procedure described in Section II-A. Next, the surface is
modified accordingly to found markers using morphological
reconstruction. The algorithm impose the minima of surface
TS at the locations specified by the markers M . Modified
topographic surface TSm has regional minima preserved
wherever M is nonzero. In this way, the markers are in-
corporated to original topographic surface. It allows to split
the clustered nuclei avoiding the oversegmentation.

III. EXPERIMENTAL RESULTS

All methods presented in this work were tested on real
medical data. For this purpose, 450 images were collected
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from 50 patients (25 with benign disease and 25 with
malignant) of the Regional Hospital in Zielona Góra, Poland.
Each patient is represented by 9 images, which is the
number recommended by the specialists from the hospital
and allows for correct diagnosis by a pathologist. Fine-needle
biopsies without aspiration were performed under the control
of ultrasonograph with a 0.5 mm diameter needle. Smears
from the material were fixed in spray fixative (Cellfix by
Shandon) and dyed with hematoxylin and eosin (H&E). The
time between preparation of smears and their preservation
in fixative never exceeded three seconds. All cancers were
histologically confirmed and all patients with benign disease
were either biopsied or followed for a year.

In order to verify the effectiveness of both segmentation
methods we performed entire diagnostic procedure and com-
pared the classification accuracy. Firstly, the nuclei were
isolated using the methods described in Section II. Then,
for each nucleus the following 28 features were extracted:

• Area - the actual number of pixels of the nucleus,
• Perimeter - the distance between each adjoining pair of

pixels around the border of the nucleus,
• Eccentricity (ECC) - the scalar that specifies the ratio of

the distance between the foci of the ellipse that has the
same second-moments as the segmented nucleus and its

TABLE I
CLASSIFICATION ACCURACY FOR ALL 84 INDIVIDUAL FEATURES USING

MLFM (LEFT) AND SW (RIGHT) METHODS. NOTE THAT THE FULL

NAME OF THE FEATURE IS OBTAINED BY ADDING THE NAME OF THE

NUCLEI FEATURE (ROWS) TO THE STATISTICS (COLUMNS). E.G. MEAN

AREA DETERMINED USING MLFM IS 63.11%, AND USING SW IS

66.89%.

feature mean median STD
Area 63.11 / 66.89 59.78 / 66.89 58.44 / 56.22
Perimeter 70.22 / 59.56 69.11 / 68.89 47.56 / 44.89
ECC 51.78 / 50.89 48.89 / 62.00 47.78 / 48.44
MjAL 66.44 / 55.33 64.89 / 56.89 45.78 / 53.33
MnAL 62.67 / 66.44 61.56 / 66.44 64.89 / 54.22
D2A 74.89 / 77.56 72.22 / 72.89 69.11 / 72.44
D2cNN 75.11 / 72.00 75.11 / 76.89 70.44 / 69.56
CN 58.00 / 76.22 60.67 / 69.11 52.89 / 71.56
CR 60.44 / 75.56 59.78 / 70.22 61.56 / 73.56
H 54.89 / 66.67 56.89 / 63.78 60.44 / 55.56
EN 55.78 / 49.33 53.78 / 52.89 70.89 / 68.89
SRE 68.67 / 74.44 69.11 / 72.00 76.22 / 75.33
LRE 73.78 / 73.56 69.78 / 72.00 38.67 / 46.22
GLN 57.78 / 49.56 61.78 / 42.89 56.00 / 44.22
RLN 52.22 / 53.78 57.78 / 60.22 47.11 / 55.33
PR 59.33 / 50.44 53.11 / 52.89 54.44 / 51.33
LGRE 53.11 / 74.44 54.22 / 69.11 60.89 / 52.44
HGRE 50.67 / 52.00 57.11 / 58.44 51.56 / 53.78
SRLGE 84.89 / 85.11 81.78 / 82.44 83.11 / 79.78
SRHGE 63.78 / 64.44 54.22 / 50.00 75.11 / 73.56
LRLGE 58.67 / 53.33 58.22 / 53.11 72.89 / 61.78
LRHGE 54.89 / 46.22 56.67 / 58.67 50.00 / 50.67
MRV 59.78 / 56.44 63.33 / 62.00 48.67 / 50.44
MGV 80.00 / 84.00 85.11 / 84.22 50.00 / 51.11
MBV 79.78 / 82.89 82.00 / 86.89 55.33 / 52.67
VRV 53.78 / 50.44 58.22 / 51.11 48.00 / 55.56
VGV 62.44 / 70.89 63.11 / 73.33 58.67 / 63.56
VBV 70.89 / 74.89 66.44 / 70.67 79.78 / 79.33

major axis length,
• Major Axis Length (MjAL)- the length of the major

axis of the ellipse that has the same normalized second
central moments as the nucleus,

• Minor Axis Length (MnAL)- the length of the minor
axis of the ellipse that has the same normalized second
central moments as the nucleus,

• Distance to Centroid of All Nuclei (D2A) - the distance
between the geometric center of the nucleus and cen-
troid of all nuclei,

• Distance to c-Nearest Nuclei (D2cNN) - sum of dis-
tances between the geometric center of the nucleus and
geometric centers of c-nearest nuclei; after conducting
experiments with different values of c, we decided to
set this parameter to 1,

• Gray-Level Co-occurrence Matrix (GLCM) features -
the group of 4 features extracted from GLCM [17]
determined for offsets corresponding to 0◦, 45◦, 90◦

and 135◦ using eight gray-levels:
– Contrast (CN),
– Correlation (CR),
– Homogeneity (H),
– Energy (EN),

• Gray-Level Run-Length Matrix (GLRLM) features - the
group of 11 features extracted from (GLRLM) [18]
determined for offsets corresponding to 0◦, 45◦, 90◦

and 135◦ using eight gray-levels:
– Short Run Emphasis (SRE),
– Long Run Emphasis (LRE),
– Gray-Level Nonuniformity (GLN),
– Run Length Nonuniformity (RLN),
– Run Percentage (RP),
– Low Gray-Level Run Emphasis (LGRE),
– High Gray-Level Run Emphasis (HGRE),
– Short Run Low Gray-Level Emphasis (SRLGE),
– Short Run High Gray-Level Emphasis (SRHGE),
– Long Run Low Gray-Level Emphasis (LRLGE),
– Long Run High Gray-Level Emphasis (LRHGE)

• Mean R, G and B Value (MRV, MGV, MBV) - the mean
value of pixels of the nucleus in channel R, G and B
respectively,

• Variance of R, G, and B Value (VRV, VGV, VBV) - the
variance of pixel values of the nucleus in channel R, G
and B, respectively.

For each image, the mean, median and standard deviation
(STD) were calculated giving a total number of 84 features.
The features were then standardized. The approach was
tested for the classification accuracy, which is defined as
the percentage of successfully recognized cases to the total
number of all cases. The classification accuracy was tested
using k-nearest neighbor (kNN) classification algorithms and
n-fold cross-validation technique. The fold was a set of
9 images representing 1 patient. This means the images
belonging to the same patient were never at the same time
in the training and testing set.

Tab. I presents classification accuracy for individual fea-
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tures. The approach was also tested using an optimal set
of features. The sets for both methods were found using
sequential forward selection algorithm. The optimal sets of
features determined for MLFM and SW are as follows:

• Set for MLFM - MGV (median), area (mean), SRHGE
(STD), HGLRE (mean), HGLRE (median), LRE
(mean), LRE (median), MRV (STD), perimeter (me-
dian), RLN (mean), GLN (median), MjAL (mean),
MGV (STD), D2CNN (median), SRHGE (mean),
perimeter (STD),

• Set for SW - MBV (median), D2CNN (median),
SRHGE (mean), MnAL (median), HGLRE (median),
LRE (mean), LRE (STD), SRHGE (median), LRLGE
(mean), LRLGE (STD).

Surprisingly, both methods gave exactly the same results. The
classification accuracy obtained using optimal feature sets
was 95.56%, sensitivity 0.97, specificity 0.94, and Matthews
correlation coefficient 0.91.

In the considered approach, images were classified indi-
vidually. However, the diagnostic decision concerns patients,
not single images. The final diagnosis obtained by a majority
voting of the classification of individual images belonging
to the same patient (e.g. for given patient, if 5 images
were classified as benign and 4 as malignant then the final
diagnosis for the patient would be benign) was for both
methods 100%.

IV. CONCLUSIONS

In this paper we compared the suitability of nuclei seg-
mentation using MLFM and SW algorithms for breast cancer
classification problem. As a comparative criterion the clas-
sification accuracy was used. Tested on real case medical
data, both methods gave very similar results. This showed
that both methods are a good choice for nuclei segmentation
if the initial markers are given. However, the SW algorithm
requires less initial parameters than MLFM, which makes it
easier to use. Computational complexity of both methods is
similar. Result of 95.56% for individual images and 100% for
patients shows that proposed approach can provide valuable
information for a medical specialist. Experiments also proved
that conditional erosion is a very useful tool for detecting
nuclei centers even when the nuclei are densely clustered.
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