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Abstract— Direct observation of vocal fold vibration is indis-
pensable for a clinical diagnosis of voice disorders. Among cur-
rent imaging techniques, high-speed videoendoscopy constitutes
a state-of-the-art method capturing several thousand frames per
second of the vocal folds during phonation. Recently, a method
for extracting descriptive features from phonovibrograms, a
two-dimensional image containing the spatio-temporal pattern
of vocal fold dynamics, was presented. The derived features
are closely related to a clinically established protocol for
functional assessment of pathologic voices. The discriminative
power of these features for different pathologic findings and
configurations has not been assessed yet. In the current study,
a collective of 220 subjects is considered for two- and multi-class
problems of healthy and pathologic findings. The performance
of the proposed feature set is compared to conventional feature
reduction routines and was found to clearly outperform these.
As such, the proposed procedure shows great potential for
diagnostical issues of vocal fold disorders.

I. INTRODUCTION

The lateral vibration of the vocal folds (VF) modulate
the air from the lungs generating the carrier signal of
speech. Disordered voice production is commonly due to
irregularities or asymmetries of the VF movement leading
to disturbances of the voice signal [1]. In this regard, direct
observation of the VFs is indispensable to make a reliable
diagnosis. As fundamental frequency of VF oscillation is
usually within the range of 100 to 400 Hz, modern high-
speed cameras provide sampling rates of 2,000 to 10,000
frames per second in order to capture the intra-cycle vibra-
tory characteristics of the VFs [2].

Subjective analysis of endoscopic high-speed videos, how-
ever, is time-consuming and it relies on the clinician’s
knowledge and experience to make judgments about the
vibratory behavior and is furthermore restricted by insuffi-
cient reproducibility. Hence, objective analysis of endoscopic
videos gained increasing attention over the last decades.
Physical abnormalities of laryngeal tissues are usually iden-
tified by texture analysis [3] of single color images. Current
approaches targeting objective analysis of endoscopic high-
speed videos quantify glottal perturbation [4], asymmetries
[5] or correlation along the anterior-posterior dimension [6].
However, to distinguish between different pathologic findings
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the complete vibration pattern has to be taken into consid-
eration. In model-based approaches, the VF movement can
be adapted to optimally fit the given model by performing
mathematical optimization procedures. The most common
approaches are lumped element [7] and finite element mod-
els [8]. A combination of model parameter estimation and
electroglottographic signal analysis is employed by Qin et
al. [9]. Biomedical models found a broad acceptance but in-
terpretation and optimization are still extremely challenging
tasks.

A comprehensive documentation of laryngeal dynamics was
achieved by introducing phonovibrograms (PVG) [10]. The
PVG contains the full spatio-temporal pattern of vocal fold
dynamics. It allows visualization for clinical interpretation
and furthermore, provides the basis for image processing
routines to extract valuable features for an objective analysis
of VF dynamics. PVG-based classification of voice disorders
was made by Voigt et al. by discriminating healthy and
paralytic findings [11] as well as healthy and functional voice
disorders [12]. The limitations of the approach are twofold:
On the one hand, the separation of individual oscillation
cycles may be difficult due to aperiodicities often occurring
with strong pathologies and on the other hand, the large
number of correlated features may reduce the predictive
power of the underlying support vector machine (SVM)
classifier [13].

Recently, we introduced a wavelet-based analysis of VF
vibration and showed that the proposed feature set is closely
related to the subjective ELS guideline for functional assess-
ment of pathologic voices. In the current study, we are going
one step further by considering healthy subjects and three
groups of pathologies: VF paresis, muscle tension dysphonia
(MTD) and polyps. Therefore, the corresponding feature
vector was extended and optimized and is compared to fea-
ture vectors obtained from diverse dimensionality reduction
procedures.

II. MATERIAL AND METHOD
A. Phonovibrography

In order to extract VF dynamics from high-speed video
sequences, the glottal area is segmented in each video frame
by employing a modified region growing algorithm that
involves just minimal user intervention [16]. The glottal area
is bounded by left and right VF representing the periodical
movement of the VFs during phonation. A compact visual-
ization of the glottal area segmentation can be achieved by
constructing the PVG. The PVG encodes the spatio-temporal
deflection of both VFs by calculating the distances from the
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Fig. 1. Construction process of the PVG representation. a) The glottal area
is segmented in each video frame, b) the left contour is rotated by 180°
and the distances from the VFs to the glottal axis are color coded, c¢) the
color-coded strips are finally concatenated and form the PVG representation.

glottal axis defined by the most anterior (A) and posterior
(P) ending of the glottis to the segmented VF contours (Fig.
1). A detailed description of the PVG assembling process
can be found in Lohscheller et al. [10].

B. Wavelet-based analysis

The PVG exhibits recurring vibration patterns that funda-
mentally characterize VF dynamics. Recently, we developed
a wavelet based approach to quantify the geometrical struc-
ture of the vibration pattern involving a minimum number of
parameters [14]. Therefore, opening and closing instants are
identified forming a characteristic contour within the PVG
representation. In Fig. 1 c), these instants (white dashed
lines) form a triangular shape that represents a “zipper-like”
opening and closing of the VFs. This characteristic shape
is quantified by evaluating the distance between estimated
phase values of opening and closing instants along the glottal
axis.

C. Feature vector

Features of three categories (A,B and C) are used for
the assessment of the different classification tasks and are
presented in the following.

1) Glottal closure type (category A): The distance from
opening to closing instants along the glottal axis quantifies
the glottal closure type of VF vibration. However, the
distance vector comprises 256 highly correlated entries
for each VE. To provide a compact representation of the
vibration pattern a “norm-map” is computed from left and
right VF vibration of healthy subjects (reference group). This
is achieved by using dimensionality reduction procedures
that provide so called out-of-sample extensions allowing
to apply a trained model to out-of-sample points. In the
current study, several linear and non-linear dimensionality
reduction procedures were evaluated: principal component
analysis (PCA), kernel PCA (KPCA), Isomaps and locally
linear embedding (LLE). For PCA and kernel PCA the
out-of-sample extension is actually quite straightforward.
For the latter two techniques, out-of-sample extensions
have been proposed by Bengio et al. [15]. The raw contour
information of left and right VF vibration are projected into

the reference space spanned by a group of healthy subjects
and the corresponding components constitute the feature set
compactly representing glottal closure characteristics.

2) Phase information (category B): The PVG vibratory
pattern is also characterized by anterior-posterior and
left-right phase relations. A linear regression of the
phase displacement in the anterior-posterior dimension is
performed for left and right VF individually using the
wavelet phase signal defined in [14]. Additionally, the
mean phase displacement between left and right VF is
estimated and provides a measure of asynchronism. The
standard deviation of the phase displacement values over
time specifies the coupling of the left and right phase signal.

3) Asymmetry and irregularity (category C): The best
classification accuracy was achieved by employing 5 domi-
nant PCA components for left and right VF. It was shown
[14] that the first eigenvectors constitute an objective pendant
to the current subjective European Laryngological Society
(ELS) classification guideline [17]. According to the ELS,
the glottal closure can be classified as longitudinal, dorsal,
ventral, irregular, oval, and hour-glass shaped. The longitudi-
nal type is characterized by the first eigenvector, dorsal and
ventral by the second and oval and hour-glass by the third one
(Fig 2). The contribution of higher order eigenvalues char-
acterizes deviations from the reference group. Irregularity of
left and right side is therefore quantified as the absolute sum
of all components of order 6 and higher. Vibration symmetry
is specified by evaluating the Euclidean distance between left
and right projection within the PCA space spanned by the
first three ELS related components.

D. Subjects and equipment

The VF vibrations of 220 subjects were captured with the
HS Endocam 5562 high-speed camera (Richard Wolf GmbH,
Knittlingen, Germany). The camera provides a sampling rate
of 4,000 frames per second with a spatial resolution of 256 x
256 pixels and is equipped with a supplemental cold light
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Fig. 2. First, second and third eigenvector component obtained from a PCA
that was performed for 100 healthy subjects. The corresponding contours
are closely related to the ELS guideline for subjective video assessment of
VF vibration.
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TABLE I
CLASSIFICATION ACCURACY (IN PERCENT), STANDARD DEVIATIONS AND DIMENSIONALITY OF THE FEATURE SPACE FOR THE 2-CLASS, 3-CLASS
AND 4-CLASS PROBLEMS AND FEATURE CATEGORIES: A) GLOTTAL CLOSURE CHARACTERISTICS, B) PHASE INFORMATION AND C) IRREGULARITY
AND ASYMMETRY.

A A,B A, B, C
PCA KPCA Isomaps LLE PCA KPCA Isomaps LLE proposed
feature set
acc dim acc dim acc dim acc dim| acc dim acc dim acc dim acc dim || acc dim
healthy vs. MTD || 774 20 7L6 18 7L9 16 70.1 14 || 78.3 2044 73.0 2044 721 40+4 TL5 40+4 || 79.5 10+443
¥y Vs +4.2 +5.5 +4.6 +4.8 +4.7 +4.6 +5.2 +5.2 +3.3
healthy vs. 81.2 4 813 22 804 6 814 24 || 8.7 4+4 89.3 18+4 88.5 4+4 889 16+4 92.4 10+4+3
paresis +2.7 +3.4 +3.7 +4.5 +2.5 +3.7 +2.8 +3.0 +1.8
healthy vs. pol 795 14 76.1 36 73.2 40 683 40 ||81.7 1044 77.0 2044 78.0 40+4 74.0 34+4 | 89.5 10+4+3
Y VS-POYP Il 438 +4.9 +5.6 +6.9 +3.2 +5.4 +4.4 +4.9 +2.1
healthy vs. MTD || 53.7 6 52.8 14 523 4 520 30 |[63.6 20+4 61.1 6+4 624 4+4 60.6 8+4 || 67.5 10+4+3
vs. paresis +2.7 +3.9 +2.9 +4.6 +2.9 +2.6 +2.8 +3.3 +2.6
healthy vs. MTD || 69.9 26 64.7 40 61.8 36 59.3 40 [|69.4 18+4 64.4 40+4 65.1 22+4 62.0 36+4 | 78.4 10+4+3
vs. polyp +2.7 +3.9 +5.3 +5.1 +2.6 +3.8 +4.0 +4.8 +2.4
healthy vs. 74.1 14 688 22 676 30 64.6 36 ||77.3 1444 70.9 30+4 73.2 36+4 68.3 36+4 | 86.3 10+4+3
paresis vs. polyp || £3.1 +4.0 +4.4 +4.2 +2.6 +4.1 +4.0 +4.0 +1.7
healthy vs. MTD || 56.0 14 51.8 36 49.0 30 46.2 40 |[59.6 14+4 53.8 38+4 55.7 20+4 52.3 38+4 | 69.0 10+4+3
Vs. paresis vs. +2.9 +4.1 +3.9 +3.6 +2.2 +3.8 +3.3 +4.1 +2.0
polyp
source. of healthy subjects was used to span the reference space

From the 220 subjects, 40 were with a diagnosed MTD (29 f,
44.03+14.48 yr, 11 m, 57.17 + 13.27 yr), 40 were found to
suffer from unilateral VF paresis (19 f, 51.89 +20.70 yr, 21
m, 59.784+8.54 yr) and for 40 subjects (19 f, 54.14+£12.97 yr,
21 m, 59.40£12.60 yr), a polyp was found on the VFs. For
the remaining collective of 100 subjects (63 f, 41.274+15.84
yr, 37 m, 41.27£15.84 yr) no signs of voice disorders were
found. All subjects were instructed to phonate the vowel /ae/
at comfortable pitch and loudness during the examination
procedure. For each subject, a sequence of 1,000 frames (=
0.25 s) was considered meaning a total number of 220, 000
segmented video frames.

E. Classification

To evaluate the predictive power of the proposed feature
vector, a SVM was trained to assign high-speed videos to
one of the four classes: healthy, paresis, MTD or polyp. In
the current study, the RBF kernel was used that was found to
perform best. Due to a restricted number of subjects within
the individual classes the leave-one-out cross validation
strategy was pursued. Classification was performed using
1. the raw contour information characterized by 512 highly
correlated features and 2. diverse dimensionality reduction
procedures. The validation was repeated 100 times and for
each iteration a group of 60 subjects was randomly selected
from all healthy subjects. Therefore, the selected collective

where the remaining subjects (40 per class) were projected
into. This strategy ensures balanced class distributions.
Multiclass classification was realized through the “one-
against-one” strategy [18].

III. RESULTS

As the classifier achieved merely 26.1% accuracy when
using the high correlated raw contour information for dis-
criminating between all four classes the high dimensional
feature vector is not suited for an automated diagnosis. Con-
sequently, procedures for dimensionality reduction (PCA,
KPCA, Isomaps and LLE) were employed. The results are
presented in Table 1. For each procedure the dimensionality
of the feature vector (dim) is shown that achieved the
highest classification accuracy (acc). Features were taken
from different categories: A) glottal closure characteristics,
B) phase information and C) irregularity and asymmetry.
In 6 from 7 cases, PCA was found to perform best. Fur-
thermore, PCA achieved the highest accuracy with lower
dimensional feature vectors than KPCA, isomaps and LLE.
The additional phase information clearly increased the accu-
racy values, especially when differentiating between healthy
and paretic vibration patterns. Again, PCA showed the best
performance.

The proposed feature set (A, B, C) comprising 5 dominant
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PCA eigenvectors for each side, phase information, irregu-
larity and asymmetry parameters shows substantial improve-
ments for all classification tasks. This is particularly true for
identifying VF polyps. Minor improvements, however, were
achieved for identifying functional dysphonia.

IV. DISCUSSION

PCA clearly outperformed other dimensionality reduction
procedures providing higher accuracy in combination with
lower dimensionality of the feature space. The first three
PCA eigenvectors were found to correlate with the subjective
ELS guideline. Hence, they have a descriptive meaning
helping to further optimize and extend the current feature
set. It was also shown that including phase information
is essential for comprehensively describing and judging
VF dynamics. This is particulary true for organic voice
disorders (paresis, polyp). Finally, the proposed feature
set additionally comprising irregularity and asymmetry
measures was found to have the best overall performance.
Eigenvectors of higher order characterize high-frequent
disturbances along the anterior-posterior dimension and are
therefore summarized in a single irregularity parameter
helping to reduce the dimensionality of the feature space.
Generally, higher classification accuracy was achieved
when differentiating between healthy vibration patterns and
organic pathologies. Organic voice disorders are caused
by physical abnormalites in structure of the vocal tract or
problems in the nervous system disturbing the vibration
pattern in terms of periodicity and symmetry. VF polyps
appear localized as a swelling or bump on one or rarely on
both VFs. As only global features are used in this study, it is
remarkable that polyps localized on arbitrary positions along
the VFs are identified quite accurately. Therefore it can
be inferred that the entire vibration pattern is significantly
altered in the case of an existing polyp.

Classifying functional voice disorders is much more
complex. Table I clearly shows the difference between the
classifier performances that were achieved for identifying
functional (79.5%) and organic (92.4%, 89.5%) voice
disorders. However, it has to be kept in mind that the
clinical picture of functional dysphonia is quite ambiguous
and clinical diagnosis can be a complex process involving
history and auditory, acoustic and visual examination [19].

The successive incorporation of clinically relevant features
has shown good results so far. In the future, we will
incorporate audio analysis of the synchronously recorded
acoustic waveform. As acoustic examination is one of
the steps in diagnosing functional voice disorders we
hope to improve the corresponding classification accuracy.
Furthermore, non-stationary phonation was found to provide
further diagnostic features [20]. Hence, alterations of the
vibration patterns during phonation onset will be quantified
and it will be assessed wether improvements of classification
can be achieved.
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