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Abstract— In this paper we present our image preprocessing
methods as a key part of our automatic polyp localization
scheme. These methods are used to assess the impact of different
endoluminal scene elements when characterizing polyps. More
precisely we tackle the influence of specular highlights, blood
vessels and black mask surrounding the scene. Experimental
results prove that the appropriate handling of these elements
leads to a great improvement in polyp localization results.

I. INTRODUCTION

Colorectal cancer is the third most common cancer in

incidence and the fourth most common cause of cancer

death worldwide. Its survival rate decreases the later it

is detected [1], hence the importance of colon screening

techniques such as colonoscopy. Although colonoscopy is

still the gold standard for colon screening, it has some

drawbacks being polyp miss-rate (reported to be as high as

6% [2]) the most relevant problem. The work presented in

this paper is enclosed into the field of intelligent systems for

colonoscopy which aim at providing additional information

to the colonoscopy procedure. More precisely we are focused

on the development of automatic polyp localization methods,

which still nowadays present several difficulties.

We present here the first study that takes into account

the impact of different endoluminal scene elements in polyp

localization results. We will address the influence of specular

highlights, blood vessels and the black mask that surrounds

the endoluminal scene.

Our automatic polyp localization method integrates valley

information to locate the polyp. We must discern between

valley information that comes from polyps and the one

that is related to other elements in order to improve polyp

localization results. The novelty of the work presented is

the assessment of the impact that different elements of the

endoluminal scene have on polyp localization results, as the

three of them are also source of valley information which

can affect the performance of our algorithms.

The structure of the paper is as follows: in Section II we

introduce previous approaches on polyp characterization. We

introduce our model of appearance for polyps in Section

III. Our polyp localization method, in which the image

preprocessing methods are enclosed, is presented in Section

IV. In Section V we show our experimental setup along with

image preprocessing and polyp localization results. Finally

we finish this paper in Section VI with the main conclusions

extracted along with proposals for future work.
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II. RELATED WORK

The description and characterization of endoluminal scene

elements has been recently addressed in the literature. Al-

though the majority of the available works are related to

polyp characterization, there are also some works related to

other elements such as the lumen [3] or specular highlights

[4]. Other works devoted to either enhance the quality of

colonoscopy frames or to discard low quality frames [3].

Related to polyp characterization, we can divide the exist-

ing bibliography [3] into three separate groups: 1) Shape; 2)

Texture and 3) Color. Related to shape, we can also make a

subdivision between two different types of methods: based

on the curvature of the boundaries [5] or based on shape

fitting [6]. There is a number of works on the field of texture

description using specific texture descriptors such as wavelets

wavelet descriptors, local binary patterns or co-ocurrence

matrices [7]. The work of [8] presents MPEG-7 texture and

color descriptors used in polyp characterization methods. Our

previous work [9] departs from this specific approaches by

building a general model of polyp appearance which takes

into account both the processes of image acquisition and

image generation. This model defines polyps delimited by

boundaries corresponding to valleys in the intensity image

as explained in the next section.

III. MODEL OF APPEARANCE FOR POLYPS

In order to define our model of appearance for polyps

we use an a priori model about the polyp and a model of

the illumination. In this case, for the sake of simplicity we

consider polyps as semi-spherical shapes that protrude from

the colon wall plane [9]. We also consider that polyp’s sur-

face is homogeneous and its reflectance can be approximated

by the Phong’s illumination model [10]. We can model the

colonoscope by a pinhole camera and a punctual illumination

source placed in the same position. As can be seen in Figure

(a) (b) (c)

Fig. 1. Model of appearance and illumination of polyps: (a) Graphical
representation of an illuminated prominent surface (a polyp); (b) Synthetic
model rendering of a polyp (c) Corresponding grey level profile of both
graphical and synthetical representations of the polyp .
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1 the center of protruding objects, such as polyps, reflects the

incident light back to the camera but lateral surfaces reflect

light outside the camera.

Taking this into account, the characterization of the polyp

is obtained through the shadings related to valleys in the

intensity image as can be seen in Figure 2 where we intensity

valleys constitute the boundary of the polyp. The detection

of polyps is thus linked to the identification of the valleys

that constitute their boundaries.

(a) (b)

Fig. 2. Presence of intensity valleys in polyp boundaries: (a) Original
image; (b) Grey level profile under the yellow line drawn in (a).

In order to obtain valley information we use the Multilocal

Creaseness valley detector that was presented in [11] - other

alternatives such as Second Derivative of Gaussians [12]

could provide equivalent results -. In our case we opt to

use the former since its output is more geometrical, leading

to eliminate the response that non-desired structures may

provide. Our valley detector is good at localizing the valleys

in the image but it fails in terms of quantifying them, as its

output is somewhat binary. In order to solve this the output

of a valley detector (V ) can be multiplied by the output

of the morphological gradient (Mgrad) to generate a Depth

Of Valleys image DoV = V ·Mgrad [9]. DoV image will

ideally present high values in pixels that constitute polyp

boundary. We use this DoV image as the source of our

polyp localization algorithm but, as it will be seen in the next

section, we need to eliminate non-polyp valley information

to make our algorithms perform robustly.

IV. METHODOLOGY

Our polyp localization processing scheme consists of three

different stages: 1) Image preprocessing; 2) Depth of Valleys

Accumulation (DOVA) energy maps and 3) Final polyp

location from the maxima of DOVA energy map.

A. Image Preprocessing

Unfortunately, as can be seen in Figure 3, polyps are not

the only source of valley information. We study four differ-

ent sources of valley information in colonoscopy images:

1) Polyps; 2) Specular highlights; 3) Black mask and 4)

Blood vessels. As our polyp localization method uses valley

information to give its output, it is necessary to address

the effect of the different non-polyp sources to ease later

processing stages.

(a) (b) (c)

Fig. 3. Valley information sources: (a) Original image; (b) Valley image;
(c) Manually-marked valley image. Marked valleys are from polyps (red),
blood vessels (blue), specular highlights (yellow) and black mask (orange).

a) Specular highlights: The impact of specular high-

lights is twofold: we can have valley information within

the specular highlight area, and we can also have this

information around the specular highlight. We apply two

different operations: 1) detection and 2) inpainting.

1) Detection: our method extends current state-of-the-

art in colonoscopy videos [4] (Figure 4 (c)). In our case,

we are concerned on those pixels that are suspected to

be part of a specular highlight but they can not be easily

identified. We assume that the intensity value inside the

specular highlight is higher than its surroundings and pixels

nearby to specular highlights will continue having higher

intensity values, although smaller than inside the specularity.

We find these pixels by calculating the difference between

the original image and its median (not considering pixels

already part of specular highlight) so we can obtain which

pixels in the image have a intensity value marginally higher

than its neighborhoods. Then, by means of a threshold value,

we keep only those where the difference is higher.

(a) (b) (c)

Fig. 4. Specular highlights detection: (a) Original image; (b) Extension
of the detection obtained with [4]; (c) Zoom of the red square area in the
detection mask. True positive pixels are painted in white and those TP pixels
that we detect with our method that were not detected by [4] in blue.

2) Inpainting: The inpainting method consists of two

different stages:

a) Diffusion: In this stage we diffuse values from the

original image into pixels with no value which are under

the detection mask M . We track the positions of the pixels

under M and, for each of them we perform as follows: we

obtain a 3×3 neighborhood around the pixel and change its

original value by the mean value of the valid neighbors. Valid

neighbours are those pixels which either do not belong to the

original M mask or that have already being modified by the

diffusion process. This process is repeated until every pixel

under M has a new value. Once this happens, we repeat the

process until the difference between the new and the previous

value of pixels underM is smaller than a threshold valuesth.

A graphical example of the diffusion algorithm is shown in

Figure 5. We can see that for the calculation of the diffused
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value of the pixels under M , which are painted in white, we

only use information from valid neighbors, painted in orange

in the image.

(a) (b) (c)

Fig. 5. Example of the diffusion stage of the inpainting algorithm for
one pixel: (a) Representation of the initial stage of the diffusion algorithm:
pixels under M mask are painted in white whereas pixels outside M are
painted in orange; (b) Calculation of the new value from valid neighbors,
and (c) Image with new value obtained.

The complete diffusion algorithm is:

Algorithm 1: Inpainting diffusion algorithm

Data: Diffusion(I ,FM ,MC)

Arg:(I: original image, M : detection mask, MC:

minimum change threshold)

Result: Diffused image(Id)

Initialization of valid neighbors mask;

1 V NM = ¬M ;

Calculation of diffused values for pixels in M;

2 repeat while the image is modified over sth
3 stop = true;
4 forall the ~x ∈ I :M(~x) == 1 do

Definition of a neighborhood around a pixel;

5 Neigh = {~p|~p ∈
Neighborhood(~x), V NM(~p) == 1};

6 if #Neigh > 0 then

Calculation of the diffused value;

7 nv =
∑
~p∈Neigh Id(~p)

#Neigh ;

Calculation of the stop flag;

8 if V NM(~x) == 1 then
if |nv − Id(~x)| > sth then

stop = false;
else

stop = false;
end

Actualization of the diffused image value;

9 Id(~x) = nv;
end

end

until stop == true;

b) Obtention of the final inpainted image: To create the

final inpainted image we also have to consider that if we do

a direct substitution of the pixels under M there will still

remain a clear frontier between pixels inside and outside the

final image, as happens with the method explained in [4] (an

example of this is shown in Figure 6 (b)). In order to solve

this we create an extended mask which ponders the way

we combine the original image Io and the diffused Id in the

final inpainted Inp image. This extended maskM1 is created

by dilating the original M mask with a circular structural

element and later convolving the result with a gaussian

kernel. Once this mask is obtained the final inpainted image

Inp is calculated as:

Inp =M1 · Io + (1−M1) · Id (1)

where Io(x, y) and Id(x, y) respectively correspond to the

original image and the diffused image. In pixels under

M mask, the intensity values are completely replaced by

their corresponding values in the Id. On the other hand, as

we depart from the original M mask, the contribution of

the original Io values increases. An example of the final

inpainted image can be seen in Figure 6 (c).

(a) (b) (c)

Fig. 6. Comparison of specular highlights inpainting results: (a) Original
image; (b) Inpainted impage obtained by using method explained in [4]; (c)
Inpainted image obtained with the method proposed in this paper.

b) Black mask: Colonoscopy video frames are natively

acquired with a black mask (see Figure 3 (a)). The borders

of the black mask do generate valley information, as can be

seen in Figure 3 (c). In order to cope with this problem we

have two alternatives, either to crop the image and analyze

what is within the limits of the black mask, or to do an

inpainting below the black mask. In our case we have opted

for the second because by cropping we loose boundary’s

information, potentially showing polyp content.

c) Blood vessels: Blood vessels segmentation is a com-

plicated task out of the scope of our current research, but

it is possible to mitigate their impact in terms of valley

information. In this case we are interested in finding a

color channel that both enhances polyp boundary information

while mitigating blood vessels. We have explored the use

of several color spaces such as sRGB, HSV or CieLab and

all the possible combinations (including channel subtraction)

within a given color channel.

B. DOVA energy maps

Once we have a cleaner valley image after the application

of our image preprocessing methods, we are able to impose

more restrictions in the final stage of our polyp localiza-

tion method. We defined in our previous work [9] Sector

Accumulation Depth of Valley Accumulation (SA-DOVA)

energy maps integrating DoV information, which combined

valley localization provided by a valley detector with a better

quantization provided by morphological gradient. SA-DOVA

was built by placing a series of radial sectors centred on

each pixel and summing the maxima of DoV image under

each sector. The rationale behind this approach was that

7352



pixels inside the polyp should be surrounded by boundaries

constituted by pixels with high value of the DoV image.

SA-DOVA is heavily affected by how the DoV image

is in a way such if the source image is clean it works

as suspected, but under the presence of abundant valley

information related to non-polyp elements of the scene, its

performance gets damaged. A simple but effective solution

to eliminate noise and also benefit circularity is the use of

median in the accumulation process instead of the sum of the

maxima under each sector (See Eq(2)). The novel Median

SA-DOVA (MSA-DOVA) is calculated as follows:

MaxL(~x, α) = max
r
{DoV (~x+ r ∗ (cos(α), sin(α)))},

AccMSA(~x) = Med
α

(MaxL(~x, α)), (2)

AccSA(~x) =
∑

α

(MaxL(~x, α)),

where α ∈ [0, 2π] and r ∈ [Rmin, Rmax], Rmin and

Rmax correspond respectively to the minimum and maxi-

mum radius of the sectors used in the accumulation process.

We show in Figure 7 a qualitative comparison between

the results obtained by SA-DOVA and MSA-DOVA. As

we use the position of the maxima of the energy map to

locate the polyp we will be interested in having a higher

value associated to polyp boundaries than to other structures

in the image. We can see in Figure 7 (b) that by using

SA-DOVA there is no difference in terms of maxima of

accumulation between a non-continuous structure composed

by a few pixels with high DoV value (maxima value: 0.93)

and a continuous structure composed by more pixels with

smaller DoV value (maxima value: 0.93). By changing from

sum-based to median-based accumulation we keep a similar

maxima value under the continuous structure (0.95) but we

almost eliminate accumulation inside the non-continuous one

(maxima value: 0.12).

(a) (b) (c)

Fig. 7. Impact of non-continuous boundaries with high DoV value on
the output of SA-DOVA energy maps: (a) Original image; (b) SA-DOVA
energy map; (c) Median-DOVA energy map.

V. EXPERIMENTAL RESULTS

In order to assess the performance of our methods we

will use the, up to our knowledge, only available labeled

database of colonoscopy videos, which was introduced in

[9]. In this case, as in the original paper, we will only use a

subset of 300 frames from the database, as some of the videos

either content too much fecal content or do not have enough

quality to be analyzed. In order to tune the parameters for

the MSA-DOVA we used 30 images, different from the

ones in the test database and we selected as final parameter

values those which yielded better localization results. More

precisely we set the minimum and maximum radii to 30 and

130 respectively and we also fixed to 180 the number of

radial sectors used in the accumulation process.

We will perform two different experiments: a) Evalua-

tion of the different image preprocessing methods, and b)

assessment of the impact of image preprocessing in polyp

localization results.

A. Image preprocessing results

For the case of specular highlights detection we will

compare the performance of our method with two general

state-of-the-art approaches [13], [14] and with the method

we base our approach on [4]. In this case we use as a metric

the Detection Rate (DR), which is defined as the percentage

of specular highlights pixels that have been detected by each

method. Results from Table I show that our contribution

improves the state-of-the-art in specular highlight detection

[4]. The errors in our approach are caused by failing on

detecting some pixels close to the specular highlight but not

part of it.

Method Yang et al Yoon et al Arnold et al Bernal et al

Detection rate % 53.04% 42.12% 81.44% 84.20%

TABLE I

COMPARISON OF SPECULAR HIGHLIGHT DETECTION METHODS.

For the case of specular highlights inpainting we will

only compare our method with current state-of-the-art in

colonoscopy [4] and in this case we will measure the ratio

between the valley energy around the specular highlight

before (E0) and after the inpainting (Einp). Both methods

have the same M mask as input. As can be seen from

Table II, by using our method we improve the mitigation

of specular highlights-originated valleys.

Method E0 Einp %(Einp/E0)
Arnold et al 1083.99 574.38 52.98%
Bernal et al 1083.99 445.84 41.13%

TABLE II

COMPARISON OF SPECULAR HIGHLIGHTS INPAINTING METHODS.

The objective of blood vessels mitigation experiment is to

test, in terms the two low-level image processing algorithms

used to generate the DoV image (valley detection and mor-

phological gradient), if we can mitigate the effects of blood

vessels in the image without losing polyp information. We

selected and annotated a subset of 29 images with high blood

vessel presence to test our mitigation method. We measure,

for each input image, the relative difference (%) in energy

under both vessels and polyp contour masks from the original

value obtained from the grey scale image. We summarize

the main results obtained in Table III. We can observe

from the table that by using the B channel of the sRGB

image we mitigate blood vessels’ energy while enhancing

polyp contours for both valley detection and morphological

gradient.
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Measure Polyp Vessel Difference

Morph. gradient 9.21% −0.44% 9.65%
Valley detection 20.33% −6.61% 26.95%
Depth of valleys 1.87% −0.02% 1.89%

TABLE III

BLOOD VESSELS MITIGATION RESULTS BY USING CHANNEL B OF THE

SRGB IMAGE

B. Polyp localization results

We show a graph which presents the polyp localization

results based on the application of image preprocessing

methods in Figure 8:

Fig. 8. Break down of the number of images with correct polyp localization
(total of images: 300) according to the preprocessing applied to the original
image and how the accumulation is performed.

There are several conclusions that can be extracted from

this Figure:

1) The preprocessing method that has more impact on

polyp localization results is blood vessels mitigation,

followed by specular highlights correction.

2) By applying all the preprocessing methods to the orig-

inal image and by changing the accumulation method

we improve our polyp localization results in almost 90

images (30%) - see Figure 9)-.

3) The change of summing-based to median-based accu-

mulation results on an improvement of polyp localiza-

tion results applied on the greyscale image.

(a) (b) (c)

Fig. 9. Maxima of accumulation both inside (green) and outside (red)
polyp contour (blue) for: (a) No preprocessed image and SA-DOVA; (b)
Full preprocessed image and SA-DOVA; (c) Full preprocessed image and
MSA-DOVA;

VI. CONCLUSIONS AND FUTURE WORK

Considering that valley information is the source of infor-

mation of our polyp localization algorithm, in this paper we

tackled the impact of several elements of the endoluminal

scene (specular highlights, blood vessels and black mask)

that also give valley response. For the case of specular high-

lights we introduced our detection and inpainting algorithms

that improve general and specific approaches. Our preliminar

study on blood vessels mitigation shows that the use of the B

channel of the sRGB image leads to a decrease in the valley

information related to blood vessels. Finally we applied the

same inpainting method to the black mask superimposed

to the endoluminal scene. Once preprocessing is done we

apply a simple but effective improvement to a previous

iteration of DOVA energy maps as the last step of the polyp

localization algorithm. The experimental results show that

all the three preprocessing methods have an impact on the

overall performance on polyp localization methods although

blood vessels mitigation and specular highlights correction

are the techniques that lead to a better improvement. By

means of the proposed preprocessing we improve polyp

localization results in almost 30% of the images, which

confirms its necessity.

The future work will involve the consideration of the rest

of elements of the endoluminal scene such as the lumen or

wrinkles and folds along with a development of a future

scale-space implementation of the DOVA algorithm.
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