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Abstract— Gastric contractions are underpinned by an elec-
trical event called slow wave activity. High-resolution electrical
mapping has recently been adapted to study gastric slow
waves at a high spatiotemporal detail. As more slow wave
data becomes available, it is becoming evident that the spatial
organization of slow wave plays a key role in the initiation and
maintenance of gastric dsyrhythmias in major gastric motility
disorders. All of the existing slow wave signal processing
techniques deal with the identification and partitioning of
recorded wave events, but not the analysis of the slow wave
spatial organization, which is currently performed visually. This
manual analysis is time consuming and is prone to observer
bias and error. We present an automated approach to classify
spatial slow wave propagation patterns via the use of Pearson
cross correlations. Slow wave propagations were grouped into
classes based on their similarity to each other. The method was
applied to high-resolution gastric slow wave recordings from
four pigs. There were significant changes in the velocity of the
gastric slow wave wavefront and the amplitude of the slow wave
event when there was a change in direction to the slow wave
wavefront during dsyrhythmias, which could be detected with
the automated approach.

I. INTRODUCTION

Contractions of the stomach serve to break down ingested
food and mix the ingesta with gastric secretions. These con-
tractions are governed by an underlying bio-electrical event
know as slow waves, which are generated and propagated by
a specialised network of cells known as the Interstitial Cells
of Cajal (ICC) which are distributed throughout the stomach
musculature [1]. Abnormalities in ICC and dysrhythmic
slow wave activity have been associated with major gastric
functional and motility disorders such as gastroparesis [2],
and functional dyspepsia [3].

The conventional analysis of gastric slow wave activity
has typically employed sparsely spaced electrodes, with the
focus on frequency characteristics of the signal. For example,
in the normal human stomach, gastric slow wave occur at
a frequency of around 2-4 cycles-per-minute (cpm), and
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deviations outside this range have been classed as dys-
rhythmic slow wave activity; with less than 2 cpm defined
as bradygastria, and more than 4 cpm as tachygastria [4].
However, the lack of spatial resolution due to the low density
of sampling is a significant drawback of sparse electrode
recordings.

The advent of high-resolution (HR) mapping of gastric
slow waves have afforded a comprehensive spatiotemporal
description of gastric dysrhythmias [5]. It has been shown
that in addition to the frequency characteristics, the spatial
organization of slow waves also exhibited significant devia-
tions from the normal activity [6], [7], which may routinely
occur even at normal frequencies [2]. To date, all HR
mapping studies have employed manual classification and
visual analyses of these spatial slow wave patterns, which
presents the potential for missing certain critical features
that are pertinent to gastric slow wave dysrhythmias due to
observer error or bias.

In this study we introduce an automated method for
classifying slow wave propagation based on spatiotemporal
characteristics. The proposed method was developed with the
intention of analyzing, defining, and summarizing pertinent
distinguishing features of gastric slow wave recordings un-
der normal and dysrhythmic conditions. This method was
designed with features that make it suitable for both offline
and online signal processing, frameworks of which have been
previously described [8], [9], [10].

II. METHODS

A. Recording method

Gastric slow waves were recorded from the stomachs
of four pigs in-vivo. Animal ethics were granted by The
University of Auckland Animal Ethics Committee. The In-
ternational Guiding Principles for Biomedical Research In-
volving Animals and Human Beings were followed. Methods
of surgery, anaesthesia, and physiological monitoring was
performed as previously described [6]. A flexible printed-
circuit-board (PCB) electrode array (256 electrodes; 4 mm)
was positioned on the anterior porcine stomach [11]. A five
minute period of stabilization was allowed prior to a 15
minute recording period.

All recordings were acquired using the ActiveTwo system
(Biosemi, Amsterdam) at a sampling frequency of 512 Hz.
The common mode sense (reference) electrode was placed on
the body surface of the lower abdomen. The right-leg drive
electrode (ground) was placed on the right hind leg. The
acquisition box was connected to a Dell M1450 notebook
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computer via a fiber optic cable. The acquisition software
was written in Labview 8.2 (National Instruments, Texas).

B. Signal Processing

The raw signals were first downsampled to 30 Hz, and
the recorded slow wave events were identified using a
validated automated variable threshold method (Fig. 1(a))
[12]. Next, based on the knowledge of the spatial locations
of the electrode, slow wave events were clustered into their
propagating wavefronts using a validated polynomial-based-
surface estimate algorithm [13]. The clustered wavefront
was visualised as an activation time (AT) map (Fig. 1(b)),
which represented the spatiotemporal pattern of slow wave
propagation as recorded on the surface of the stomach [11].

Fig. 1. Processing of high-resolution gastric slow wave signals. (a) shows
filtered signals with a red cross denoting the activation time of the slow wave
event. Next based on the knowledge of the spatial location and timing of
each event, they were clustered into their propagating wavefronts to generate
an isochronal activation time map as shown in (b) (1 second intervals), with
the vertical black arrow showing the direction of propagation. The dots
represent electrode positions, with the red dots indicating interpolated data.

C. Automated classification method

The goal of the automated classification method is to
efficiently quantify and classify heterogeneous slow wave
propagation patterns. The classification step uses a similarity
metric to group propagation patterns into similar classes.

The first AT map was chosen as a template, and each sub-
sequent candidate AT map was compared to it. If a candidate
AT map was considered to be similar to an existing template,
then the template was updated by averaging the AT map at
each electrode position (Fig. 2). If a candidate AT map was
dis-similar to any existing templates, it synthesizes into a
new AT template. The similarity metric was quantified using
a Pearson-correlation-coefficient (PCC) and its expression is

shown in (1). A PCC threshold of 0.9 was empirically chosen
to group similar slow wave events.

PCC =
(X − µX)(Yi − µYi

)

σXσYi

(1)

In (1), X is the candidate AT map, Yi is the ith AT template
map, µX and µYj

are the associated means whereas σX
and σYj

are the associated standard deviations of X and
Yi respectively.
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Fig. 2. Flowchart of the developed automated method to characterize
gastric slow wave propagations.

After all the AT maps were assessed by the above classi-
fication algorithm, the total number of resultant templates
represented the number of modes present in a particular
recording. The amplitude and velocity of each wavefront
were also calculated using methods previously described [8],
[14].

If the recoded data had consistent stable propagation
patterns then a single AT template would be calculated. On
the other hand, if the recorded data had unstable propagation
patterns, then a larger number of AT templates would be
calculated.
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Fig. 3. Mode graph illustrating the two classes of propagation present in this
case, i.e. antegrade and retrograde slow wave propagation. In (a) the mode
graph provides information on the modes of slow wave propagation timing
and frequency of the propagation. AT maps for four of the 21 waves from
the example recording have demonstrated on the mode graph. (b) shows the
final two templates generated by the automated classification scheme, with
the arrows overlaid to demonstrate the dominant propagation directions.

III. RESULTS

The automated classification method was applied on four
pig experimental HR recording data sets, one of which only
exhibited normal propagation, whereas the rest exhibited
dysrhythmic slow wave propagation. A mode graph was
produced to show the stability of the slow wave propagation
(Fig. 3). The frequency of slow wave propagation can also be
interpreted from the mode graph. Fig. 3 showed a recording
with an abnormal slow wave propagation where the direction
of propagation reversed from antegrade to retrograde. For
this data set, the velocity and amplitude distribution of the
antegrade and retrograde slow wave propagation is shown in
Fig. 4. It can be seen that the retrograde propagation had
higher velocities and slightly higher amplitudes compared to
antegrade propagation.

An ANOVA was performed on velocity and amplitude
calculations between different propagation pattern classes for
each of the experimental data sets (Table I). The results
showed there were significant variations in amplitudes and
velocities of slow wave propagations across different prop-
agation pattern classes. The computational time to process
the recorded data in an offline setting was also recorded in
Table I.

IV. DISCUSSIONS & CONCLUSIONS

In this paper we have introduced a method to automatically
identify and classify spatiotemporal patterns of gastric slow
wave propagation. It was applied to four porcine experimen-
tal HR recordings and provided useful information about the
nature of varying slow wave propagation patterns. Using this
method variations in slow wave propagation occurring in any
given experiment could be automatically summarized in a

Fig. 4. Comparison of velocities and amplitudes of gastric slow wave propagation in a data set (Fig. 3) which exhibited two different types of propagation
(1) antegrade (in blue crossed) and (2) retrograde (in red dots). This histogram of the amplitudes and velocities of the two different classes are shown around
corresponding axis. The antegrade propagation has a lower velocity profile and slightly lower amplitude distribution compared to retrograde propagation.
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TABLE I
ANOVA ANALYSIS OF AMPLITUDE AND VELOCITY CALCULATIONS

BETWEEN DIFFERENT PROPAGATION PATTERN CLASSES IN FOUR DATA

SETS. WHEN THERE WERE TWO OR MORE CLASSES, VELOCITIES AND

AMPLITUDE VARY ACROSS CLASSES. COMPUTATIONAL TIME IS ALSO

RECORDED.

Experiment Number 1 2 3 4
Number of Waves 45 52 21 27

Number of Classes 1 5 2 6
Amplitude - p<0.05 p<0.05 p<0.05
Velocity - p<0.05 p<0.05 p<0.05

Computational time (ms) 21 72 12 28

mode graph, to readily and objectively visualize changes
in pattern. In cardiac HR electrical mapping, techniques
exist to analyse dysrhythmic activity [15], but those methods
cannot be used directly used in gastric HR mapping due
to differences in the temporal course and spatiotemporal
patterns of slow wave activity compared to cardiac activity.
Some of the potential applications of this method along with
its advantages are described.

From human gastric HR mapping studies, it has been
revealed that during circumferential propagation in dys-
rhythmias such as gastroparesis, slow wave velocity and
amplitude increases by more than two fold due to the
inherent anisotropy in the stomach [2]. The increase in
amplitude is due to the proportionality between velocity and
transmembrane current entering the extracellular space [16].
In Fig. 3, with retrograde propagation there is an element
of circumferential propagation and a higher velocity due to
the longer spacing of isochrones in comparison to antegrade
propagation. The corresponding higher velocities correlate
with higher amplitudes, as seen in Fig. 4. The ability to
detect variation in slow wave patterns, developed here, can
therefore be applied as a clinical tool to detect and investigate
gastric dysrhythmias. By creating templates of slow wave
activity, a library of templates could be constructed to auto-
matically discern similarities or differences between gastric
dysrhythmias and gastric disorders. Another application of
this method is that it can test the efficacy of drugs and novel
therapies such as surgery or electrical stimulation on gastric
slow wave propagation during the experiment.

The main advantage of the automated method is that it
eliminates the need for visual classification of slow wave
propagation patterns and presents the data in an intuitive
manner. As the described methods are not a large scale
pattern recognition system, it can be over-sensitive if the
AT maps have not been clustered correctly. If the AT maps
are not consistently formed well, a large of classes will
end up, resulting in an incorrect inference. The methods are
computationally efficient. In an offline setting, this automated
method took on average around 30 ms to classify 12 minutes
of recordings. This method is particularly advantageous in
an online setting where the computational overhead is a
significant factor for implementation and visualization [9].
Here we have applied this method to gastric HR slow wave

recordings, but it can be used for HR mapping of other
gastrointestinal organs exhibiting slow wave activity such as
the intestine. This automated method is therefore anticipated
to provide valuable insights into slow wave propagation in
the gastrointestinal tract during experimental recordings.
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