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Abstract—In this study, we propose to use morphological 

features that are easy to identify to differentiate myocardial 

ischemic beats from normal beats. In general, myocardial 

ischemia causes alterations in electrocardiographic (ECG) signal 

such as deviation in the ST segment. When the ST segment level 

deviates from a certain voltage, the beat would be diagnosing as 

myocardial ischemia. To emphasize on ST variations, the QRS 

complex of the ECG signal was first subtracted and replaced 

with a straight line. Five–level discrete wavelet transform (DWT) 

followed to decompose the waveform into subband components 

and the A5 subband, which is most sensitive to the changes in the 

ST segment, was reconstructed for the calculation of 12 

morphological features. The support vector machine (SVM) and 

the 10-fold cross-validation method were employed to evaluate 

the performance of the method. The results show high values of 

95.20%, 93.29%, and, 93.63% in sensitivity, specificity, and 

accuracy, respectively, that were demonstrated to outperform 

the other methods in the literature.  

I. INTRODUCTION 

“Myocardial ischemia is the pathological state underlying 
ischaemic heart disease. It can lead to myocardial infarction 
(commonly known as heart attack) which in its acute form can 
lead to the death of the affected person.” [1]. The most 
important cause of myocardial ischemia is coronary artery 
stenosis or obstruction. Myocardial ischemia causes 
alterations in electrocardiographic (ECG) signal such as 
deviation in the ST segment [2]. When the ST segment 
deviates more than a certain level, the beat would be 
diagnosing as myocardial ischemia. 

Recently, several studies have been conducted to 
developing computer-aided diagnosis algorithms for the 
diagnosis of myocardial ischemia. Exarchos and coworkers 
proposed to use rule-based mining technology to identify 
myocardial ischemia heartbeat from normal heartbeat in 2006 
[3]. Khoshnoud and coworkers used subband ECG signal 
decomposition with multi-level wavelet analysis and claimed 
that their method provided an easier way to locate the 
important points of the waveform for myocardial ischemia 
diagnosis with probabilistic neural network (PNN) [4].  
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However, conventional methods usually required to find 
the fiducial points, e.g. T wave, R peak, ISO point, J point, as 
features for myocardial ischemia detection [5], but the fiducial 
points may not be easy to locate when the ECG signal is noisy. 
Therefore, in this study, we proposed to use morphological 
features that were calculated from the entire heartbeat 
waveform. With this method, only the R point of the heartbeat, 
which is the easiest  to locate, is to be located and the requisite 
of extremely clean signal for accurately locating several key 
points is loosened. The performance of the method was 
validated using support vector machine classifier and 10-fold 
cross-validation method. 

II. METHODS 

A. Database: 

The data used in the experiments were obtained from the 
“European Society of Cardiology (ESC) ST-T database” [6]. 
This database includes 78 data files recorded from myocardial 
ischemia patients. Each file contains two-lead, two-hours 
ECG signals sampled at 250 Hz. The start and end times of the 
ST-segment changes (myocardial ischemia episode; MI 
episode) were clearly annotated in the files. 

B. Discrete Wavelet Transform  

Discrete wavelet transform (DWT) was employed to 
decompose the ECG signals into subband components. The 
DWT provides a good time-frequency representation of a 
signal by using variable sized windows. Long time windows 
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Figure 1. Experimental procedure. 
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are used to get a finer low frequency resolution. Short time 
windows are used to get high frequency information. WT is 
suitable for the analysis of non-stationary signals such as 
ECG.  

The ECG signal can be decomposed into finer details by 
multi-level discrete wavelet transform (DWT) using high-pass 

(g[n]) filter,  low-pass (h[n]) filter, and downsampling (2). 
[7]. After the first level decomposition, two signals 
representing the detail (high-frequency) and the approximate 
(low-frequency) are obtained. The approximate signals are 
further decomposed into the detail and the approximate after 
the second level decomposition, et al, as depicted in Fig. 2 (a). 
Subband components can be reconstructed back to the length 
of the original signal x[n] by inverse DWT (IDWT), as 
depicted in Fig. 2 (b). This process can also be used to 
eliminate noises by setting components in certain subbands to 
be zero and perform the IDWT. 

C. Preprocessing 

The aim of the preprocessor was to remove the baseline 
wander and noise artifacts frequently observed in ECG 
signals. ECG baseline wander usually caused by breathing or 
unexpected movement of experimental settings, which usually 
cover the frequency range below 1Hz [8]. In order to eliminate 
baseline wander, we used DWT to decompose signal to the 
seventh level and then set the approximate coefficient A7 to 
zero and perform the IDWT. In this manner, subband 
components below 0.97 Hz were removed from the signal.  

The second part of the preprocessor was to remove noise 
artifacts.The soft-thresholding method proposed by Donoho 
[9] was adopted for this purpose. Seven levels of DWT were 
applied to the signal first. The subband coefficients with 
minor values were considered noise and were set to zero 
before the application of  IDWT to eliminate the noise.  

D. R Peak Detection 

In order to accurately locate the R peaks in ECG, we 

focused only on the 
3

D and
4

D subband components that 

show the most significant features of the QRS complex [10]. 
First of all, all the other subband components, except that of 

3
D and

4
D , were set to zero. Moreover, to highlight the 

location of the QRS complex, the coefficient values in both  

3
D and

4
D were squared and the smaller values (threhold= 

standard deviation of the reconstruction signal) eliminated 
before performing IDWT. The location of the peaks in the 
reconstructed signal were the tentative positions of the R 
peaks, as depicted in Fig. 3 (a). However, since DWT 
sometimes causes minor shift of the waveform, the positions 
of the real R peaks (Fig. 3 (b)) were determined by searching 

the highest peaks in the vicinity (10 samples) of the tentative 
R peaks (Fig. 3 (a)) in the preprocessed ECG signal.  

E. Calculation of Morphological Features 

After the R peak has been located, a 80-point waveform, 
with 35 samples before and 44 samples after the R peak (Fig. 
4 ),  was  segmented  as  the  representative  waveform  of   a  

(a)  

(b)   

Figure 2. Discrete wavelet transform (DWT). (a) forward DWT 

(decomposition); (b) inverse DWT (reconstruction). 

  

(a)  

 (b)  

Figure 3. R peak detection. (a) tentative R peaks; (b) real R peaks after 
vicinity searching. 

 
 

Figure 4. 80-sample ECG waveform of a heartbeat. 

 

heartbeat. The three points J, JX, and ISO closely related to 
the R peak were first located on the waveform according to the 
heart rate, as shown in Table I and Fig. 4. The QRS complex 
was defined as the part of waveform between the ISO and J 
points. In order to concentrate only on the features associated 
with ST segment, the QRS complex was first removed from 
the original waveform and replaced with a straight line (dash 
line in Fig. 4).A five-level DWT followed to decompose the 
QRS subtracted waveform into different subbands. The 
low-frequency part (A5) of the 5

th
-level DWT was 

reconstructed using IDWT. Six features were exploited to 
characterize the reconstructed A5 component, namely (1) the 
power the A5 component (Power), (2) the power ratio of the 
A5 to the original signal (Power ratio), (3) JX potential, (4) ST 
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level, (5) ST deviation, and (6) ST slope, as summarized in 
Table II.  

In order to characterize the variation of the waveform from 
a typically “normal” one, a reference waveform was generated 
by calculating the average waveform of the 80-point beat 
waveforms in the first 30 sec record, as adopted by the 
European Society of Cardiology to calculate the “normal” 
waveform for the database [6]. Six features associated with 
the relationship between the reconstructed A5 components 
from the test and the reference waveforms were calculated, 
including (1) the correlation coefficient (CC), (2) the mean 
(Mean_CF) and (3) the standard deviation (SD_CF) of the 
cross-correlation function, and (4) the mean (Mean_D), (5) 
the standard deviation (SD_D), and (6) the power (Power_D) 
of the difference waveform between the test and reference 
waveforms.  

Each feature was normalized by subtracting the mean 
value from the feature and dividing by the feature’s standard 
deviation. This process intended to normalize all the features 
to the same level.  

F.  Support Vector Machine Classifier 

Support vector machine (SVM) maps the training samples 
from the input space into a higher-dimensional feature space 
via a mapping (kernel) function [11]. Any product between 
vectors in the optimization process can be implicitly 
computed to generate a hyperplan to categorize the samples 
into two classes. 

For a training set of instance-label pairs (xi,yi), i=0,…l, 

where  xi R  and  yi=[-1,1], and a non-linear operator 

mapping with kernel function φ , the optimization problem 

becomes 

0,01))(( subject to
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where S>0 is the penalty parameter for the error term and 
i

  is 

the set of slack variables that is introduced when the training 
data is not completely separated by a hyperplane. To solve 

this problem, Vapink [11] has shown that the solution can be 

found by minimizing both the errors on the training set 
(empirical risk) and the complexity of the hypothesis space. 
Consequently, the decision found by SVM is a tradeoff 
between error and model complexity. Numerous studies have 
demonstrated the superiority of using SVM classifier over 
other classifiers in pattern classification tasks. Consequently, 
we employ the SVM classifier in the study. The radial basis 
function (RBF) was empirically selected as the kernel function 
of the SVM classifier. 

III. RESULTS AND DISCUSSIONS 

Fourteen data files were selected from the database for 
experiments. Based on the information about myocardial 
ischemia  episode  provided  by  the  database,  3970  ischemic  

TABLE I.  LOCATIONS OF THE KEY POINTS 

Heart rate (HR) J JX ISO 

HR > 120 bpm R+40ms R+60ms R-40ms 

120 bpm > HR > 100 bpm R+40ms R+60ms R-40ms 

HR < 120 bpm R+60ms R+80ms R-40ms 

TABLE II.  MORPHOLOGICAL FEATURES CALCULATED FROM THE QRS 

REMOVED WAVEFORM 

Feature Feature Description  

Power Power of the A5 subband signal Feature 1 

Power ratio 
Power ratio of the A5 subband to the  

original signal 
Feature 2 

JX potential Potential of the JX point Feature 3 

ST level Potential difference between J and  ISO Feature 4 

ST deviation ST level change from the normal Feature 5 

ST slope Slope of the segment between J and JX Feature 6 

   

CC 
Correlation coefficient of the test and 

reference waveforms 
Feature 7 

Mean_CF mean of the cross-correlation function Feature 8 

SD_CF 
Standard deviation of the 

cross-correlation function 
Feature 9 

Mean_D 
Mean of the difference waveform of the 

test and reference waveforms. 
Feature 10 

SD_D 
Standard deviation of the difference 

waveform 
Feature 11 

Power_D Power of the difference waveform Feature 12 

 

and 28890 normal heartbeat waveforms were segmented from 

the data files for analysis. 

The performance of the classifier was measured by three 
statistics indices, namely (1) specificity: the percentage of 
correctly classified normal beats among the total normal beats; 
(2) sensitivity: the percentage of correctly classified 
myocardial ischemia beats among the total ischemic beats; (3) 
accuracy: the percentage of correctly classified beats among 
all the beats. 

The ten-fold cross-validation method [12] was employed 
to evaluate the performance of a classifier. The test sample 
beats were firstly divided into ten test sample groups with the 
same distribution of attribute. Each sample group was 
alternatively reserved as the test group. The other nine groups 
were used to train the classifier and the performance of the 
classifier was measured by using the reserved group as test 
samples. This procedure repeats until all the sample groups 
had been reserved once as test samples. The performance of 
the classifier was evaluated by the average values of the three 
indices in the ten trials. 

The results were summarized in Table III. The proposed 
morphological features and SVM classifier achieved a 
sensitivity of 84.69% and a specificity of 97.25%, resulting in 
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an accuracy of 95.22%. The results were impressive, 
especially with the high specificity and accuracy. However, 
we have noticed that the sensitivity was much lower than the 
specificity. This phenomenon was caused by the imbalanced 
data sets, which would favor the major (normal) class and 
ignore the minor (ischemic) class.   

Therefore, we sought to resolve this problem with 
over-sampling  [13], which increases the number of samples in 
the minor class with data interpolation (or over-sampling) 
based on the real samples to the same level of the major class. 
The performance of the classifier using over-sampling in the 
training phase is demonstrated in Table IV. Comparing the 
performance in Table III and Table IV, a dramatic increase in 
the sensitivity was observed with the over-sampling technique. 
Only a minor decrease in specificity was observed, which was 
believed to be the compensation caused by oversampling in 
the minor (ischemic) class. The two effects resulted in a 
classifier equally effective in recognizing normal and 
ischemic ECG beats.   

The performance of the proposed system was compared to 
that of two representative methods published in the literature, 
although the databases were not exactly the same. One is the 
rule-based mining method proposed by Exarchos and 
coworkers [3], which achieved 87% in sensitivity and 93% in 
specificity. The other is the method proposed by Khoshnoud 
and coworkers, who used subband ECG signals for locating 
important myocardial ischemic points for classification with 
probabilistic neural network (PNN) [4]. A sensitivity of 
96.67% and a specificity of 89.18% were reported. The 
comparative results were summarized in Table V. It is 
impressive that the proposed method with over-sampling 
achieved sensitivity and high specificity, which is superior to 
the other methods that only show large value in either 
sensitivity or specificity. This property of the method is 
believed to be favorable for a computer-aided myocardial 
ischemia diagnosis system. 

IV. CONCLUSION 

We proposed a method for the detection of ischemic 
heartbeats based on morphological features. The objective of 
the study was to use only the R point which is easily 
identifiable and bypass the need to identify the key points that 
are apt to be buried in noise and might be difficult to be 
correctly located, such as the S and T points. Easily 
identifiable key points only depending on the location of the R 
point and the heart rate were used instead (Table I). 
Morphological features were calculated from the A5 subband 
components of the QRS complex subtracted waveform. This 
approach minimized the interference of the QRS complex in 
the calculation of ST-related features and only focused on the 
variation of the ST segment in characterizing ischemic 
waveform.  

Impressive performance was observed with the 
morphological features. The application of oversampling 
technique to balance the samples in the two data sets further 
improved the performance of the classifier. The results 
demonstrate the effectiveness of the proposed method in 
accurately detecting ischemic beats using morphological 
features that are easy to calculate. 

TABLE III  EXPERIMENTAL RESULTS 

Beat 

Type 

Number of 

Samples 

(Train+Test) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Ischemic 6489+722 84.69 97.25 95.22 

Normal 33724+3748 

 

TABLE IV  THE EFFECT OF OVER-SAMPLING IN ISCHEMIC CLASS 

Beat 

Type 

Number of 

Samples 

(Train+Test) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Ischemic 33724+722 95.40 93.29 93.63 

Normal 33724+3748 

 

TABLE V  COMPARISON WITH OTHER STUDIES 

Method Sensitivity Specificity Accuracy 

Rule-based [3] 87% 93% 90% 

PNN classifier [4] 96.67% 89.19% 90.75% 

Proposed method 95.40 93.29 93.63 
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