
  

  

Abstract—This paper describes a robust method of 
Instantaneous Heart Rate (IHR) and R-peak detection from 
noisy electrocardiogram (ECG) signals. Generally, the IHR is 
calculated from the R-wave interval. Then, the R-waves are 
extracted from the ECG using a threshold. However, in 
wearable bio-signal monitoring systems, noise increases the 
incidence of misdetection and false detection of R-peaks. To 
prevent incorrect detection, we introduce a short-term 
autocorrelation (STAC) technique and a small-window 
autocorrelation (SWAC) technique, which leverages the 
similarity of QRS complex waveforms. Simulation results show 
that the proposed method improves the noise tolerance of 
R-peak detection. 

I. INTRODUCTION 

Mobile health is expected to play an increasingly 
prominent role in health provision because of the advent of an 
aging society [1]. Especially, daily life monitoring is 
important to prevent lifestyle diseases, which raise the 
number of patients and elderly people who need nursing care. 
This report specifically describes noise-tolerant IHR and the 
R-peak detection algorithm for a wearable ECG monitoring 
system. The IHR, an important bio-signal, is useful for heart 
disease detection, heart rate variation analysis [2], and 
exercise intensity estimation [3]. 

The key factors affecting wearable system usability are 
miniaturization and weight reduction. However, strict 
limitations on power consumption and electrode distance of 
wearable ECG monitors renders them sensitive to various 
noises. Especially, the signal-to-noise ratio (SNR) of ECG 
signals of moving (e.g. exercising) subjects is degraded. 

Sophisticated analog front-end circuits are generally 
necessary to prevent SNR degradation. The analog front-end 
of the ECG monitoring system mainly comprises amplifiers, 
analog filters, and an analog-to-digital converter (ADC). 
Unfortunately, analog circuits are large, with high power 
consumption. Battery mass and power consumption must be 
reduced because battery mass dominates wearable systems. 

Amplifiers have a tradeoff between power consumption 
and performance (e.g., gain, phase characteristic, common 
mode rejection ratio). Moreover, the analog filter in an ECG 
monitor has a large RC time constant because the frequency 
range of ECG signals is low (less than 1 kHz). Consequently, 
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it is difficult to use a high-performance amplifier and analog 
filters, which have a high quality factor. 

Ultra-low-power ADCs, which have sub-µW power 
consumption and limited sample rate, have been developed 
for biomedical applications [4, 5]. Furthermore, according to 
Moore's law, the power of digital components increases with 
the progress of process technology. However, the power 
consumption of analog circuits will not decrease similarly. 
Therefore, the feature and purpose of our approach is the use 
of digital signal processing to reduce the performance 
requirements of analog components and to minimize the 
entire system’s power consumption. 

II. CONVENTIONAL IHR AND R-PEAK DETECTION 

Extracting R-waves with a threshold determination is a 
general approach. Recently, various statistical approaches 
have been proposed for noise-tolerant threshold calculation 
such as using root-mean-squares (RMS) [6], standard 
deviations (SD), and mean deviations (MD) [7]. 

Some preprocessing techniques for noise reduction from 
an ECG signal have been proposed such as a band pass filter, 
an adaptive filter [8], a Kalman filter [9], a discrete wavelet 
transform (DWT) [6, 10], and neural networks [11]. They are 
used in advance of threshold calculation to mitigate noise 
intensity and to improve the R-wave detection success rate. 

Autocorrelation [12, 13] and template matching [14] are 
more robust approaches because these algorithms utilize the 
similarity of QRS complex waveforms and have no threshold 
calculation process. Previously, autocorrelation was used in a 
non-invasive monitoring system [15]. However, the method 
requires numerous computations because it calculates the 
average heart-rate over a long duration (30 s). 

In our previous work, a short-term autocorrelation 
(STAC) technique has been proposed for IHR detection [16]. 
This algorithm is applied after preprocessing, which utilizes 
the quadratic spline wavelet transform (QSWT) [10]. The 
QSWT requires few calculations and little hardware cost 
because it can be implemented using only adders and shift 
operators. Fig. 1 presents frequency characteristics of the 
QSWT with 128-Hz sampling rate. The base-line wander and 
hum noise can be removed easily using QSWT. 
Unfortunately, the frequency range of the muscle artifact and 
electrode motion artifact resemble the desired ECG signals. 
Therefore, the STAC is applied to extract the IHR from 
output signal of QSWT (Qw). As shown in Fig. 2 and (1–4), 
the IHR at time tn (IHRn) is obtained as a window shift length 
(Tshift) that maximizes the correlation coefficient between the 
template window and the search window (CCn

ST). 
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Figure 1.  Frequency charactaristics of QSWT. 
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Figure 2.  IHR detection using STAC. 
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(4) 

In the equations above, Fs, Lwin, and w1 respectively denote 
the sampling rate (samples/s), the window length, and the 
weight coefficient. The value of Tshift is set as 0.25 s to 1.5 s 
because the heart rate of a healthy subject is from 40 bpm to 
240 bpm. The Lwin is updated according to the estimated IHR 
to reduce the computational amount and to improve the 
accuracy of IHR estimation. Then, the range of Lwin and w1 is 
determined by the maximum rate of beat-to-beat variation, 
which is generally 20% in a healthy subject [16]. 

III. PROPOSED METHOD 

The conventional STAC is optimized for IHR detection. 
Identifying the exact position of QRS complex in the template 
window is difficult. This report describes an extended 
algorithm of STAC that can extract not only the IHR but also 
R-peaks. Fig. 3 shows a block diagram of the proposed 
method. 

A.  IHR Detection with STAC 
First, IHR is calculated using QSWT and STAC. 
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Compared with (1–4), parameters of Tshift range (Tn
mix, Tn

max) 
and weight coefficient w2 are newly introduced in (5–9). Then, 
Tn

mix and Tn
max are updated according to the previous IHR. 

When multiple R-peaks are contained in the template window 
or search window, the recent R-peak is selected by weight 
coefficient w2. 

B. R-peak Detection with Small-Window Autocorrelation 
In the next step, we introduce a small-window 

autocorrelation (SWAC) method for R-peak detection. When 
the search window is fixed at Tshift = IHRn, both the template 
window and the search window contain the QRS complex at 
the same distance from the right edge of the window (see Fig. 
4). Therefore, as shown in Fig. 5, the recent R-peak can be 
identified using the autocorrelation of small windows in the 
template and search window. The correlation coefficient of 
small windows at tn (CCn

SW) and Tn
peak, which maximize the 

value of CCn
SW, are calculated as shown below. 
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The length of small window (L'
win) should be set much 

smaller than that of Lwin, and larger than the length of the QRS 
complex. For this study, L'

win was set to 0.1 s. 
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Figure 3.  Block diagram of proposed scheme. 
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Figure 4.  Definition of small window. 
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Figure 5.  QRS complex search using small-window autocorrelation (SWAC). 

Although Tn
peak denotes the QRS complex, it does not 

mean the correct time of R-peak (Tn
RP) because L'

win is larger 
than the QRS complex. The value of CCn

SW is almost the 
same while the small window contains QRS complex (see Fig. 
5). To calculate the value of Tn

RP accurately, the set of R-peak 
candidates (RPCn) is defined as described below. 
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Here, the RPCn
mean denotes the mean value of RPCn. Fig. 6 

presents the example of the Tn
RP calculation process. 
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Figure 6.  R-peak detection using SWAC. 
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Figure 7.  Parameter update of window length and evaluation time. 

C. STAC Parameter Updating and Error Detection 
Finally, next evaluation time (tn+1) and Ln+1

win are updated 
using Tn

RP, as shown in Fig. 7 and (14, 15). 
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The objective of this update is minimization of the window 
length to reduce the computational amount. 

If the template window does not include any R-peak 
caused by several errors related to noise or arrhythmia, then 
Tn+1

min, Tn+1
max, and Ln+1

win are respectively initialized to 
0.25Fs, 1.5Fs, and 1.5Fs. This error can be detected by the 
correlation coefficient between the template window and 
search window (CCn

ST). The criterion of the error is that the 

2×CCn
ST[IHRn] must be smaller than the median of 

CCn-i
ST[IHRn-i], (1≤i≤5). Then, tn+1 is also set to tn + Fs. 

IV. PERFORMANCE EVALUATION 
To verify the effects of the proposed method, we 

performed simulation experiments using the public ECG 
database (MIT-BIH arrhythmia database [17]) and the noise 
database (MIT-BIH noise stress test database [18]). Then, we 
modeled our proposed method and conventional 
threshold-based R-peak detection method [6], which is used 
in single-chip ECG monitoring system LSI [19], in 
MATLAB. 

Fig. 8 shows the relation between intensity of muscle 
artifact noise and accuracy of R-peak detection. The 
signal-to-noise ratio (SNR) is defined as shown below.  

2log10
aN

SSNR
×

=  (16) 

Here, S, N, and a are respectively defined as the signal power, 
frequency-weighted noise power, and scale factor [18]. 

The definition of the sensitivity (Se) is Se = TP / (TP + 
FN). The definition of the positive predictivity (+P) is +P = 
TP / (TP + FP) [6]. Then, TP, FN, and FP respectively denote 
the number of correct R-peak detection, the number of 
failures to detect the true R-peak, and the number of false 
detection. 

As shown in Fig. 8, although the conventional method has 
higher sensitivity, the number of false detections increases 
rapidly with noise intensity. In contrast, the proposed method 
has higher positive predictivity of R-peak detection despite its 
use in noisy conditions. At 13 dB SNR, the positive 
predictivity is improved 19% with 1% sensitivity degradation. 
There is a similar trend in other waveforms. Fig. 9 portrays an 
example waveform of R-peak detection at 13 dB SNR with 
motion artifact noise. 
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Figure 8.  Relation between SNR (MIT-BIH #123 with muscle artifact 
noise) and accuracy of R-peak detection. Conv.: threshold based R-peak 

detection [6]. Prop.: SWAC R-peak detection. 
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Figure 9.  Example waveform of R-peak detection. 

Table 1 presents a performance comparison of R-peak 
detection with various waveforms in various conditions. The 
proposed method improved 27.8% positive predictivity (from 
67.9% to 95.7%) with 4.3% sensitivity degradation (from 
96.5% to 92.3%) on average at 13 dB SNR with muscle 
artifact. 

V. CONCLUSION 
This paper explains a noise-tolerant IHR and R-peak 

detection algorithm using short-term autocorrelation. 
Simulation results show that the proposed algorithm 
improves noise tolerance compared with the conventional 
threshold method. Therefore, the proposed algorithm for 
digital processing can contribute to reduction of the minimum 
capacity and area of wearable ECG monitoring systems. 
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TABLE I.  PERFORMANCE COMPARISON BETWEEN THRESHOLD BASED R-PEAK DETECTION [6] (CONV.) AND SWAC R-PEAK DETECTION (PROP.). 

Conv. Prop. Conv. Prop. Conv. Prop. Conv. Prop. Conv. Prop. Conv. Prop.
100 100.0 98.6 100.0 99.9 99.9 98.7 95.3 99.8 99.4 98.5 85.1 99.8
101 99.9 99.5 99.5 99.8 99.8 99.1 90.8 99.6 99.2 99.1 69.8 99.6
102 98.4 96.7 60.5 97.3 97.6 93.4 49.9 94.8 95.7 95.4 32.0 96.0
103 99.7 99.9 100.0 100.0 99.7 99.9 92.1 100.0 99.1 99.8 77.4 100.0
104 97.8 89.8 58.7 95.2 96.8 72.3 40.9 80.7 95.8 81.3 26.4 87.0
105 98.8 95.3 88.2 98.6 98.8 93.5 71.5 97.5 98.9 95.3 48.0 98.4
106 92.6 75.8 97.3 97.5 93.7 74.2 76.0 91.3 94.1 73.8 49.1 92.2
107 97.7 94.9 50.7 99.6 97.0 90.2 34.7 95.1 97.9 92.6 23.6 97.2
108 70.8 79.4 34.1 82.4 71.6 76.6 25.3 79.3 73.9 77.0 17.0 79.9
109 99.5 97.3 70.4 99.4 99.4 96.6 57.0 99.2 99.5 97.0 39.4 99.3
111 88.2 98.0 55.9 98.4 88.1 97.5 38.2 98.3 88.5 97.0 25.1 98.2
112 100.0 99.6 99.9 100.0 100.0 99.5 83.3 100.0 99.0 99.5 52.4 100.0
113 100.0 98.2 100.0 98.8 100.0 97.6 92.7 98.2 99.3 97.7 70.6 98.4
114 98.6 96.6 98.1 98.9 98.9 95.2 70.6 97.3 97.9 96.0 35.8 98.0
115 99.9 99.0 100.0 99.5 100.0 98.8 90.6 99.4 99.1 98.2 62.1 99.1
116 98.8 93.7 99.2 99.5 98.3 89.9 78.6 97.1 98.3 90.8 48.9 97.8
117 97.8 99.0 98.9 99.0 97.5 97.3 60.6 97.3 95.2 98.0 25.5 98.5
118 99.5 94.8 55.2 99.7 99.1 93.5 40.2 98.7 99.6 94.7 27.5 99.5
119 99.3 67.3 83.9 93.1 98.8 64.5 74.1 80.4 98.7 66.5 50.8 85.2
121 96.9 99.4 95.0 99.9 96.9 98.1 61.7 99.1 99.4 99.2 32.3 99.9
122 90.8 100.0 100.0 100.0 92.2 99.9 88.0 99.9 96.2 100.0 62.3 100.0
123 99.8 99.5 100.0 99.8 99.9 98.6 79.7 98.9 99.2 98.9 39.8 99.2
124 96.5 97.7 97.3 99.4 96.2 97.5 69.8 98.9 97.7 97.0 33.4 99.1

Average 96.6 94.3 84.5 98.1 96.5 92.3 67.9 95.7 96.6 93.2 45.0 96.6
S.D. 6.3 8.4 20.6 3.7 6.0 9.9 20.7 6.3 5.4 9.1 18.6 5.3

Sensitivity (%) Positive predictivity (%)
muscle artifact SNR=13dB

Sensitivity (%) Positive predictivity (%)
motion artifact SNR=13dB

Tape
(#)

Sensitivity (%) Positive predictivity (%)
w/o noise
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