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Abstract— This paper addresses the possibility of detecting
presence of scar tissue in the myocardium through the in-
vestigation of vectorcardiogram (VCG) characteristics. Scarred
myocardium is the result of myocardial infarction (MI) due to
ischemia and creates a substrate for the manifestation of fatal
arrhythmias. Our efforts are focused on the development of a
classification scheme for the early screening of patients for the
presence of scar. More specifically, a supervised learning model
based on the extracted VCG features is proposed and validated
through comprehensive testing analysis. The achieved accuracy
of 82.36% (sensitivity 84.31%, specificity 77.36%) indicates the
potential of the proposed screening mechanism for detecting
the presence/absence of scar tissue.

Index Terms— VCG, myocardial scar, SVM classification

I. INTRODUCTION

Fatal arrhythmias (ventricular tachycardia/fibrillation),
mostly caused due to disordered conduction from injured
heart tissue known as scar, is the leading cause of sudden
cardiac death (SCD). Myocardial scar is the end result of
myocardial infarction (MI) which is caused from insufficient
blood supply to a part of the heart (ischemia). This leads
to the death of a portion of cardiac cells (scarred tissue)
and affects the contractile properties of the myocardium.
The standard methods to accurately determine the scar’s
presence, size and location are imaging techniques like
Cardiac Magnetic Resonance Imaging (CMR). The main
drawback of CMR is its limited availability due to high
cost, both in terms of resources and specialized personnel.
In addition, CMR lacks portability. Therefore novel methods,
with high portability thus capable to be applied in the point-
of-care, should be developed in order to provide a screening
system for the initial identification of scar tissue in patients
who have suffered MI, in a fast, inexpensive and accurate
manner.

Such techniques could be developed based on the electro-
cardiogram (ECG), the most widespread method for monitor-
ing the heart. Research conducted in parallel with the ECG
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Fig. 1: The ECG and the VCG for the same single beat.

introduced the concept of a vector quantity that could de-
scribe the heart’s electrical activity. That concept initiated the
field of vectorcardiography and the vectorcardiogram (VCG).
VCG recordings require their own lead system and among
the various proposed systems, Frank’s orthogonal leads [1],
based on the human torso model [2], [3], became the standard
for capturing the VCG. In essence, the VCG carries the same
electrical information as the ECG but it is less intrucive
since it requires only 3 leads. Furthermore its vectorial
representation, gives additional spatial characteristics that
can enhance the analysis of the heart’s functionality [4].
Fig. 1 illustrates an ECG heartbeat and the respective VCG.
As an example of VCG utilization we refer to [5], where the
authors attempt to classify healthy subjects and MI patients
using a set of features based on the planarity of the T-wave
loop from the VCG. However the limited set of records does
not allow a concrete evaluation of the system’s robustness.

In this paper we study the VCG, the resultant from the
magnitude and direction of the electrical forces, generated
during the cardiac cycle and we observe how it evolves in
time on the 3D space of the VCG. From the spatial analysis
of the VCG we extract a number of features, which we
hypothesize that they capture the differences of the heart’s
activity when scar tissue is present/absent. We then formulate
a classification mechanism, based on a set of 27 features.
The proposed system is evaluated exhaustively over healthy
and scarred records. The rest of this paper is organized as
follows. In Section II we present our methodology and the
extracted VCG features, while in Section III the classification
and feature selection workflow are described. The results of
our experiments are presented and discussed in Section IV
while conclusions are drawn in Section V.

II. METHODOLOGY
The formation of scarred tissue due to MI affects the

propagation of the electrical stimuli of the heart with fatal
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arrhythmias being the consequences of that disordered con-
duction. Scar tissue cannot get properly excited and results
in the electrical stimuli following more than one conduction
pathways with different conduction velocities, that ultimately
causes conduction delays. This may lead to the generation
of the re-entry phenomenon which if repeated perpetually
may lead to SCD [6] . In the ECG trace, scar tissue causes
alterations in the QRS-complex characteristics, such as the
value of QRS-angle, R-wave prolongations and presence of
fragmentations [7], [8]. The morphology of the T-wave is
also know to be affected, since it represents the repolarization
of the ventricles [9].

In the present work we claim that scar-related delayed
conduction can be also reflected to a set of spatial features
extracted from the VCG. In order to justify our hypothesis we
extracted a set of features that were then used as an input
to a classifier. Clinical cardiology dictates that alterations
caused by the presence of scar tissue on the ECG and the
VCG will be present on every single heartbeat, therefore
features are extracted from the VCG of a single PQRST
complex. Since, there is poor utilization of the VCG in
clinical practice, records with independently recorded VCG
from Frank’s orthogonal leads are rare. Nevertheless many
efforts focused on reconstructing the 12-lead ECG from
VCG and vice versa. The most clinically accepted method
is attributed to Dower and for the purpose of our work we
employed the inverse Dower matrix transformation [10], in
situations where the VCG was not directly recorded. Dower’s
matrix consists of lead specific coefficients, used to calculate
the eight independent leads (V1-V6, I and II) as a linear
combination of the VCG. The inverse process produces the
VCG leads from the 12-lead ECG. The 3× 8 inverse Dower
matrix (iD) is given as: −0.172 −0.074 0.122 0.231 0.239 0.194 0.156 −0.010

0.057 −0.019 −0.106 −0.022 0.041 0.048 −0.227 0.887

−0.229 −0.310 −0.246 −0.063 0.055 0.108 0.022 0.102


L = [ V 1 V 2 V 3 V 4 V 5 V 6 I II ]T

V CG = [ V CGx V CGy V CGz ]T

V CG = L× iD (1)

The preprocessing steps required for the VCG analysis,
are the ECG baseline removal, accomplished following
the methodology presented in [11] and the ECG waves
boundaries determination accomplished using the TDMG
delineator presented in [12]. From the VCG (recorded or
reconstructed) we extract a set of spatial features we believe
may reflect the effects of delayed conduction on the VCG
morphology. Our focus is on the QRS-complex and the T-
wave and the extracted features are vector and area related.
The use of the TDMG delineator allows us to determine the
temporal boundaries of the QRS-complex loop (QRS-loop)
and T-wave loop (T-loop) in the VCG. These are obtained
from the maximum QRS- and T-duration after applying
TDMG on the ECG leads. Having localised the QRS- and
T-loops in the VCG, allows us to define the peak point of
these loops (R-peak, T-peak) as the point with maximum

distance from the origin. In addition we extract the vectors
of maximum width, (R-width, T- width) in the QRS- and
T-loop, defined by the two points which demonstrate the
maximum distance in each loop. For each vector we calculate
the magnitude and angle. Additionally the centroid point of
the VCG that represents its geometric center and defined
as C =

∫
xg(x)dx∫
g(x)dx

, is extracted and the respective vector
along with its magnitude and angle are calculated. Finally we
calculate the area of the VCG curve by counting the number
of pixels enclosed by it. The set of features is summarized
in the following list and depicted on Fig. 2:

• R-width, T-width magnitude
• R-peak, T-peak & Centroid vector magnitudes
• R-peak T-peak & Centroid vector angles
• VCG areas
These features are calculated for each of the projections

of the 3D VCG, of a single heartbeat, on the three planes
(XY-XZ-YZ). The 27 extracted parameters consist the VCG
Feature space (VCG-FS) of our investigation.
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Fig. 2: VCG extracted features from XY plane.

In our experimentation we used ECG records from two
sources: the Cardiology Department of the University Hos-
pital Southampton NHS Trust (UHS-NHS) and the PTB Di-
agnostic ECG Database (PTDB) available in Physionet [13].
Two databases (DB-I/II) are provided by the UHS-NHS.
These constitute of subjects which had 12-lead ECGs and
CMR measurements performed within the same period. The
CMR examination provides the size (in terms of %) of the
scarred tissue. From the CMR results we are able to define
the class for each instance by considering a 0% CMR mea-
surement as absence of scar and anything >0% as presence.
The first database (DB-I) consists of 154 records with 108
of them having verified scar tissue, while the remaining 46
do not have scar. The sampling frequency is 500Hz while
the A/D resolution is 2.5641 µV. The second database (DB-
II) consists of 54 patients, where only 4 are free of scar.
The sampling frequency is 1kHz and the A/D resolution is
0.5µV. In the DB-I and DB-II samples Frank’s leads were not
recordede and therefore we utilized the iD transformation for
the VCG construction. In order to balance our dataset and to
test the capability of our system to correctly classify no-scar
instances, we utilized a third database (DB-III). This was
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obtained from the 52 healthy control records of the PTBDB.
Although PTBDB does not provide any CMR results, the
annotation of these records as healthy controls, allowed us
to imply that no scarred tissue is present. Moreover, PTBDB
includes actual measurements of Frank’s XYZ orthogonal
leads, therefore there was no need for VCG reconstruction
through iD transformation. The frequency and the resolution
are the same as (DB-II). In total 260 records were considered
with 158 records having CMR verified scarred tissue.

III. CLASSIFICATION

The extracted features from the processing of the VCG
were used to formulate a robust classification model, able
to discriminate the presence/absence of myocardial scar,
following a supervised learning approach. The classification
algorithm that is utilized is the Support Vector Machine
(SVM) [14]. Analysis was facilitated by employing the Weka
machine learning software. The two options for estimating
the performance of a derived classification model are the
hold out and the cross validation (CV) procedure. In the
first one, records are randomized and divided into two sets:
the training set which is the 2/3 of the dataset and the
test set which is the remaining 1/3. Firstly the classification
model is built, extracting the knowledge from the training
records and then this knowledge is applied on the test
instances, so as to evaluate the classification rate. However,
the disadvantages of this method is that the accuracy is
estimated based on a single random partitioning, which may
not be indicative of the model’s actual performance. In the
10 fold-CV case the dataset is randomized and is divided into
10 mutually exclusive parts, with almost the same number of
data instances for each one. The 10 fold-CV strategy consists
of 10 experiments. In the i-th (i=1,.. .10) experiment the i-
th fold is used as testing set, while the remaining 9 folds
are merged and used as training set. The average accuracy
of the 10 runs experiments provides the overall accuracy
of the model. To obtain a more valid estimation of the
model’s performance multiple runs of the 10 fold-CV are
required, where the initial dataset is randomized in each run.
To avoid the stratification problem the number of instances
for the two classes is balanced in CV experiments. The actual
performance of the classification system in real applications,
is determined when an already trained classifier is applied
on records with different characteristics preferably obtained
from a different database.

When investigating a set of features for classification
purposes, the feature’s space dimensionality reduction is
a common strategy for identifying features that may add
redundancy and thus reduce the classification accuracy. The
process of feature selection also gives an insight into the
relative importance of each of the features for the particular
classification task. In our work, several feature selection
algorithms have been tested such as Information Gain, Relief
and SVM Attribute Evaluation (SVMAttributeEval [15]).
The utilization of SVMAttributeEval gave us the optimal
performance. SVMAttributeEval is implemented with the
Ranker search method which evaluates the importance of a

TABLE I: Evaluation Results
Metric Performance% Details (number of training records for each class) Feature Space
Acc 69.56% 10 fold CV
Sens 71.74% balanced DB-I (46-46) VCG
Spec 67.39% (Exp-I)
Acc 71.45% 10 fold CV
Sens 73.91% balanced DB-I (46-46) VCG-RFS
Spec 63.04% (Exp-II)
Acc 85.85% Train with balanced DB-I (46-46)
Sens 88.00% Test on DB-II/III VCG-RFS
Spec 83.93% (Exp-III)
Acc 70.83% Train with balanced DB-I (46-46)
Sens 64.29% Test on the remaining of DB I and DB-II/III VCG-RFS
Spec 83.93% (Exp-IV)
Acc 82.36% 10 fold CV
Sens 84.31% Balanced DB-I/II/III (102-102) VCG-RFS
Spec 77.36% (Exp-V)

DB-I: 108 scar records, 46 no-scar records (VCG reconstructed from iD)
DB-II: 50 scar records, 4 no-scar records (VCG reconstructed from iD)
DB-III: 52 no-scar records (recorded VCG )

feature by using an SVM classifier.
The performance metrics we utilize are: the classifica-
tion accuracy (Acc), the specificity (Spec) and sensitivity
(Sens). Subsequently we define as True Positive(TP)/False
Negative(FN) the records that have scar and are cor-
rectly/incorrectly identified, while False Positive(FP)/True
Negative (TN) the records that do not have scar and are incor-
rectly/correctly classified. Sens = TP

TP+FN Spec = TN
TN+FP

Acc = TP+TN
FN+FP+TP+TN

IV. RESULTS

Performance results from our experimentation are listed
in Table I. In Exp-I, a balanced dataset from DB-I is
constructed, using 46 records for each class. For the scar
class the 46 records with the higher scar size are selected.
The results when using the entire VCG-FS (69.56% Acc
and 71.74% Sens and 67.39% Spec) indicate that both
classes can be sufficiently distinguished. However, we at-
tempt to improve the classification model, by using the
SVMAttributeEval feature selection algorithm and reduce the
feature space to 10 attributes (VCG-RFS), with which, the
best classification accuracy is achieved. Features are ranked
according to the square of the weight assigned to them by
the SVM. Based on these weights we selected the top 10
since the rest have weights with lower impact and do not
contribute to the classification process. Exp-II is a similar
experiment to Exp-I, but with feature selection applied. The
classification rate in Exp-II slightly improves to 71.45%. The
top 10 selected features are, T-peak angle, R-peak angle, T-
peak magnitude and T-width magnitude in the XY plane,
T-peak magnitude, R-peak angle, T-width magnitude, VCG-
area and R-peak magnitude in YZ plane and finally R-peak
angle in the XZ plane. The significance of the R- and T-
angle in the XY plane is depicted in Fig. 3, which is a 2D
scatter plot of these two features and where we observe that
the two classes are distinguishable. This is also justified in
Fig. 4, which presents the R- and T-peak angles of a scar
and a no-scar VCG record.

To validate the effectiveness of our classification model,
we test it on databases with different characteristics. For
that purpose, in Exp-III we used the classification model,
generated in Exp-II and tested it on DB-II and DB-III
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records. The high performance results (Acc-85.85%) indicate
that our system is able to detect the presence of scar, also in
databases with different characteristics. Moreover in Exp-
IV, we extend Exp-III, by adding the remaining records
from DB-I as testing records. The accuracy and sensitivity
are decreased (Acc-70.83%), while the specificity remains
in the same levels. This means that records with scar are
not classified sufficiently. In our opinion, this is attributed
to the fact that the remaining records from DB-I are the
records with the lower scar size, since as we mentioned
before, records with the highest percentage of scar were used
in the training phase. To illustrate this, the testing records
that have scar in Exp-IV are grouped into 4 groups, based
on the scar size value obtained through CMR. As depicted
in Fig. 5 the number of False Negatives decreases, as the
scar size increases. From this analysis we conclude that
records with high scar size can be effectively labeled with
the proposed system, as in the training step records with
high scar size are used. The dashed line in the Fig. 5 is the
average error of 35.71% (1-Sens) and shows which of the
four groups are closer to that in Exp-IV. Finally in order
to obtain a comprehensive view of our model we conducted
an experiment (Exp-V), where we merge all three DBs and
construct a balanced dataset from all available records. As
the number of no-scar records is 102 (158 records have scar),
we construct a dataset of 204 instances and apply 10 runs
of 10 fold CV, using the reduced feature space (VCG-RFS).
The performance of Exp-V (Acc: 82.36%) indicates that our
model can sufficiently detect the presence of scar. It is to
be noted that the obtained performance will inherently be
affected by errors introduced by the reconstruction of the
VCG through the iD transformation.
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Fig. 5: Misclassified scar records in Exp-IV

V. CONCLUSIONS

This paper addresses the problem of detecting the pres-
ence/absence of myocardial scar from standard ECG/VCG
recordings. In that context, a classification model, based
on the VCG’s spatial characteristics, is proposed. A set
of 27 features, not considered before for that purpose, are
generated in order to capture the effects caused by the
presence of scar in the heart’s electrical activity. Based on
these a comprehensive investigation has been conducted on
the selected features, using a SVM based classifier. Promi-
nent performance is achieved even though the uncertainty
introduced by the inverse Dower transformation. The classi-
fication rate of 82.36% along with the sensitivity (84.31%)
and specificity metrics (77.36%) indicate that our proposed
model can be utilized in a non-invasive system for the initial
screening of presence/absence of myocardial scar.
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