
  

 

Abstract— Ballistocardiography and seismocardiography are 

both non-invasive mechanical measurements of the vibrations 

of the body in response to the heartbeat. The 

ballistocardiogram (BCG) signal represents the movements of 

the whole body in response to cardiac ejection of blood into the 

vasculature; the seismocardiogram (SCG) corresponds to local 

vibrations of the chest wall associated with sub-audible tissue 

and blood movement and audio frequency heart-valve closure 

dynamics. This paper focuses on methods for quantifying 

“signal consistency”—a quantitative measure of how 

morphologically similar each heartbeat in a patient’s recording 

is compared to the ensemble average taken over the recording. 

Before comparing each beat to the average, known 

physiological sources of inconsistency—such as respiratory 

amplitude and timing variability—are removed, then the 

remaining inconsistency is quantified. Previously described 

methods for BCG signals are expanded to fit the high-

frequency (> 20 Hz) components of the SCG. The use of this 

method in future work could help enable proactive 

management of heart disease in extra-clinical settings.  

I. INTRODUCTION 

The global burden of cardiovascular disease (CVD) poses 
a massive threat to the physical and fiscal wellbeing of 
society. Recently, Murray, et al. outlined a migration over the 
past two decades in global disease burden from 
communicable to non-communicable (chronic) diseases—
with ischemic heart disease and stroke being the first and 
second ranked contributors [1]. In the US, by 2030 the 
American Heart Association estimates that 40% of the 
population will endure CVD, and 24M people will die each 
year from the disease [2]. The problem is further 
compounded by the Association of American Medical 
Colleges projecting that Americans will have 130,000 fewer 
doctors than needed by 2025, because of the rapidly growing 
aging population, doctors retiring in the next decade, and the 
added 32M entering the healthcare system in 2014 under new 
legislation [3].  
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These facts have kindled interest in home health 
monitoring solutions in a variety of publications including, 
but not limited to, academic journals. The Dec. 1

st
 issue of 

The Economist strongly argued the need for cheaper and 
effective “self-service diagnostic technologies” [4]. In JACC, 
speaking specifically of congestive heart failure management, 
Bui and Fonarow proposed a shift from “reactive” to 
“proactive” care [5]. By enabling CVD patients with home 
health monitoring technology, therapies could be tailored to 
their changing needs, clinical visits could become less 
frequent without sacrificing quality of care, and patients 
could be empowered against their disease with constant 
knowledge of their state of health. This could result in both 
improved care and greatly reduced cost.  

With this need in mind, researchers have recently focused 
on applying non-invasive sensing techniques to home 
monitoring: two examples of such methods are 
ballistocardiography (BCG) and seismocardiography (SCG). 
These signals were first discovered in the 1900s [6-7], but 
were largely abandoned in clinical settings due to the 
availability of more sophisticated techniques such as 
echocardiography, catheterization, computed tomography 
(CT), and magnetic resonance imaging (MRI). Unfortunately, 
these sophisticated technologies are unsuitable for “self-
service diagnostic” use due to high cost, the need for a 
medical professional to administer the test, large size of the 
equipment, or obtrusiveness of the measurement. As a result, 
BCG and SCG have resurfaced as viable options for 
monitoring the mechanical output of the heart in the home.  

II. BCG AND SCG SIGNALS 

Fundamentally, the BCG and SCG represent the low 
frequency vibrations of the body in response to the heartbeat: 
the BCG corresponding to whole body vibrations, the SCG to 
localized chest vibrations. For both signals, several groups 
are focused on measuring these signals using devices that 
could readily integrate into the home—weighing scales [8], 
beds [9], chairs [10], and miniature wearable sensors [11]—
and developing algorithms or techniques for mapping 
characteristic features of these vibrations to clinically 
relevant parameters of health: cardiac output [12], 
contractility [13], heart rate variability [14], optimality of 
pacing conditions [15], and respiratory phase and apnea [16].  

Recently, we have found that the beat-to-beat consistency 
of the signal morphology may relate to the health of the 
heart—specifically, the BCG signal consistency improved 
significantly for patients being treated for heart failure in the 
clinic for the duration of their visit [17]. When we began to 
analyze SCG signals from healthy and diseased subjects, we 

A Preliminary Study Investigating the Quantification of Beat-to-

Beat Morphological Consistency in Seismocardiogram Signals 

Omer T. Inan, Member IEEE, Keya Pandia, Laurent Giovangrandi, Roham T. Zamanian, 

and Gregory T. A. Kovacs, Fellow, IEEE 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 7286



  

observed some striking similarities between the BCG and 
SCG in terms of signal consistency.  

Figure 1 shows representative three successive SCG 

heartbeat cycles for a healthy subject (Fig. 1a) and a subject 

with pulmonary artery hypertension and heart failure (Fig. 

1b). These signals were acquired using methods described in 

[16], with the SCG sensor positioned at the left sub-

clavicular region of the chest, close to the apex of the heart. 

The three SCG beats for the healthy subject are highly 

consistent in morphology, with only the amplitude varying 

from one beat to the next due to respiration. In contrast, for 

the subject with pulmonary artery hypertension, the SCG 

beat morphology varies drastically from one beat to the next. 

Given these observations, we have developed preliminary 

methods for building on BCG signal consistency 

quantification [17] to analyze the SCG. The specific 

assumptions used for extending the methods to the SCG are 

based purely on physiological expectations and observations. 

III. ESTIMATING SIGNAL CONSISTENCY 

A. Estimating BCG Signal Consistency 

To the first order, the BCG signal can be modeled as an 

underlying “template” function that is scaled in amplitude 

from one beat to another, and added to some unknown 

measurement noise. Consequently, the BCG, y[k], can be 

modeled as follows:  

 

(1) 

where s[k] is the underlying heartbeat “template” vector,  

is the amplitude scaling vector, and  represents an additive 

noise term. As shown in [18], by windowing then ensemble 

averaging the measured BCG heartbeats, an estimate of the 

underlying BCG template function, s[k], can be found. 

Furthermore, by projecting this template function onto each 

beat, the best least-squares estimate of the amplitude vector, 

, can be computed. Then, using these estimates of the 

signal and amplitude weighting vectors, the BCG signal can 

be estimated as follows:  

 

(2) 

The sample-by-sample difference between the measured 

BCG, y[k], and this estimated BCG, , provides an 

estimate of the measurement “noise” signal, from which the 

noise rms power or signal-to-noise ratio can be computed. It 

is important to recognize that the measurement “noise” may 

be due to interferences such as motion artifacts, sensor and 

circuit electronic noise, or inconsistencies in the actual 

underlying heart signal. If the effects of interference and 

electronic noise are minimized, then the ratio of “noise” to 

 
(a) 

 
(b) 

 

Figure 1.  (a) Three successive SCG heartbeat cycles from a healthy subject. The morphology of the first and second complexes of the signal is highly 
consistent for the three beats, with an amplitude scaling associated with respiration. (b) Three successive SCG heartbeat cycles from a 

subject with pulmonary artery hypertension and heart failure. The morphology and amplitude are inconsistent for the SCG complexes for 

the three successive beats.  
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signal power can yield a quantitative measure of the beat-to-

beat consistency in the mechanical output of the heart.  

B. Adapting Signal Consistency Estimation for the SCGHF 

The SCG signal contains low frequency sub-audible 

components related to the movement of blood and tissue, 

and higher frequency acoustic components related to the 

sounds generated by valve closure. For the low frequency 

components, the same signal consistency estimation methods 

used for BCG signals can be directly applied. For the higher 

frequency components, SCGHF, two characteristics of the 

signal are not captured by these first order signal consistency 

estimation methods, and the algorithm must be adapted 

accordingly.  

The SCGHF signal, defined here as the high-pass filtered 

(f3dB = 20Hz) SCG, contains two complexes, one associated 

with each heart sound, referred to here as S1 and S2. Note 

that the exact frequency of separation is still a subject of 

investigation, but in this work the “audible” frequency cutoff 

of 20 Hz was used. The amplitudes of S1 and S2 both vary 

with respiration, but not by the same magnitude, and 

generally out of phase with each other [19]. Capturing an 

amplitude term for both S1 and S2, as opposed to using a 

single amplitude term for the entire beat, is the first 

extension of the estimation method.  

Furthermore, the time interval between the S1 and S2 

complex varies for successive heartbeats because of the 

respiration-induced changes in the systolic ejection time 

[19]. As a result, a time delay term must be introduced to 

capture these changes in the model. With these added 

amplitude and time delay terms, the model then becomes:  

 

(3

) 

where h[k] is the underlying template vector for the S1 

complex,  is the amplitude scaling vector for the S1 

complex, g[k] is the template vector for the S2 complex,  is 

the amplitude scaling vector for the S2 complex,  is the 

vector describing the heartbeat timings, and  is the vector 

of time delays between the S1 and S2 complexes. The 

“noise” or inconsistency in the measurement is again 

captured by v[k].  

 The S1 and S2 complexes are then treated as separate 

signals, and analyzed using similar methods as described in 

[18] for BCG signals with one important distinction—after 

an initial ensemble averaging computation, the beats are 

realigned to each other using cross-correlation. Then, a 

second ensemble average is computed, and is considered to 

be the best estimate of the underlying S1 and S2 complexes. 

The overall methods are summarized in Figure 2. These 

ensemble averages and corresponding amplitude scaling 

vectors are then used to estimate the SCG signal similarly to 

equation (2).  

The estimated signal for one healthy subject and one 

subject with pulmonary artery hypertension are shown in 

Figure 3 (a) and (b), respectively, for purposes of visual 

observation only. Quantitatively, the consistency was 

computed to be 3.8 for the healthy subject, and 2.2 for the 

subject with pulmonary artery hypertension; however, this 

difference in consistency should not be over-interpreted at 

this point, since population studies must first be conducted. 

The focus of this conference paper is on presenting the 

methodology—future studies will then be conducted to 

rigorously assess the performance of these methods.    

 
 
Figure 2.  Signal flowchart summarizing methods for estimating 

the SCGHF signal by decomposing into S1 and S2 

complex estimation, then reconstructing the overall 

signal.  
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IV. DISCUSSION AND CONCLUSION 

Unlike the ECG, both the SCG and BCG are relatively 

low SNR signals that can unfortunately be corrupted by 

motion artifacts, electronic noise, and other interferences. As 

a result, the analysis of these signals requires a new set of 

tools, beyond what is available for the ECG, to determine 

the effects of disease on the signal morphology, and to then 

use this knowledge in patient care applications. In this work, 

the concept of monitoring the beat-to-beat morphological 

consistency of the SCG was introduced and explored, by 

expanding on an algorithm that was previously developed 

for BCG signals. In future work, the differences between 

signal consistency for healthy and diseased subjects will be 

quantified using age and gendered matched populations. 

Furthermore, other methods such as cross-correlation may 

be explored for quantifying the similarity of each heartbeat 

to the averaged beat rather than simple subtraction.  
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(a) 

 
(b) 

Figure 3. (a) SCGHF signal (top) and estimated SCGHF (bottom) for a healthy subject. Visually, the beat-by-beat consistency in the signal morphology 
was adequately captured by the estimation methods. (b) SCGHF signal (top) and estimated SCGHF (bottom) for a subject with pulmonary 

artery hypertension. The signal morphology changes more significantly from one beat to the next, but the consistent components are 

adequately captured by the model visually.  
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