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Abstract— There exist multiple markers for measuring psychological

stress, with varying specificities and sensitivities. However, in a real-

life setting, there is limited data on how robust these methods may be

especially in a relatively mobile context where the signal fidelity maybe

limited. Thus any large scale data to inform how these methods perform,

using commonly available sensors, based on both context and cohort

characterization, can greatly add to our knowledge of their respective

utility in real-life settings. This paper presents a study of 253 subjects

which provides crucial data for analysing various stress markers in a

mobile setting. We also provide early analysis results.

Index Terms— Mental Stress, Heart rate variability; Time-Domain

HRV; Frequency-Domain HRV; HR; pNN50; SDNN; RMSSD; LF/HF

I. INTRODUCTION

It is well known that through a variety of biological and be-
havioural mechanisms, chronic stress can cause a range of physio-
logical and psychological problems over time such as hypertension,
diabetes, cardiovascular disease, gastrointestinal problems, mood
disorders, substance abuse etc. To manage and/or monitor such
disorders, it is essential to have effective methods to measure stress.
Several methods for measuring stress have been proposed including
Heart Rate Variability [1], salivary cortisol, questionnaire [2], facial
expressions, pupil diameter, voice analysis [3], skin conductance
and skin temperature. Though there has been a lot of research on
methods to quantify stress, the relative preference of those methods
is still debatable. Many of these methods exhibit limited sensitivity
and convergent validity. The most widely used methods are based
on Heart Rate Variability. Both time domain and frequency domain
approaches are widely used but limited agreement exists as to
superiority of a particular approach when deployed in real-life
ambulatory settings.

The most prevalent are pNN50, SDNN and RMSSD in the
time domain and LF-HF method in the frequency domain [1].
Time-domain methods are computationally simple and robust under
artifacts and measurement errors but are believed to be less sensitive
[4] as well as lack the ability to discriminate between complex
physiological etiologies to HRV such as relative contribution of
various components of autonomic nervous systems (sympathetic
and parasympathetic) [4]. Spectral analysis via LF/HF has been
shown to be more sensitive and descriptive but has extremely low
resilience to artifacts, especially in the HF part of the spectrum [5]
and requires longer measurement epochs which hampers their appli-
cability to acute forms of stress. There are also several contradictory
results such as in [1], [6], [7] where it is established that LF/HF
directly correlates to Stress, while in [8] no particular correlation
was observed between such a measure and the short-term stress.

In the time domain methods, since proposed in 1984 by Ewing
[9], pNNx (x=50) has been the dominant model. However recent
results [10] show lower pNNx (x<20) to be a better marker, which
is unfortunately again contradicted by Hutchinson [11]. In general,
there does not appear to be a consensus on a single method for
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quantifying HRV in the context of stress, especially in a real-
life setting. This is partly due to the fact that different methods
may be more applicable for different problems. as well as lack of
adequate sized data, accurately collected in a controlled setting, but
arguably also due to the lack of a reference benchmark for stress.
These contradictory results urge one to examine the factors on
which HRV-based stress measurements depend on and in which way
these factors affect the inferred results. Finally, the accuracy of the
methods also depends on genotypical and phenotypical attributes
since these factors inform personal adaptation to chronic stress.

We especially want to note that historically stress research
has been conducted in a medical setting where hospital quality
equipment was used to collect bio-data, typically ECG. The analysis
results do not generalize to real-life and mobile settings, where
commonly available, relatively inexpensive, sensors are used, since
there is a large amount of noise in ECG data including dropped
packets; settings in which noise resilience, instead of sensitivity,
becomes the key advantage of a stress model. We present protocol
and outlines of a study on 253 subjects whose stress was measured
in a carefully controlled setting via analysis of biomarkers collected
by sensitive but readily available mobile sensors and a powerful,
real-time, data aggregation and analysis platform. We believe that
our trial design is instructive for such endeavours for data collection
- a key weakness hampering current state of the art - and our
experimental analysis adds to the knowledge of the factors on which
the HRV based stress models depends on, making it possible to
compare these markers for a variety of real-life and experimental
settings. Due to space constraints, this paper only presents broad
outlines of the study undertaken, and early analysis results in
comparing the popular methods for quantifying HRV to study
psychophysiological response to stress.

A. Time Domain Based Markers

The most widely used time domain based HRV markers are
SDNN, SDANN, pNN50, pNN20 and RMSSD. following is a short
description of them:

1) SDNN: SDNN is the standard deviation of all normal NN
intervals (intervals measured between consecutive sinus beats.) The
normal range of SDNN depends on the record length. Generally
SDNN is calculated as the mean of all 5-minute standard deviations
of NN intervals during a 24-hour period.

2) pNNx: pNNx is the ratio of the consecutive NN intervals
differing by more than “x” milliseconds, divided by the total number
of NN intervals. pNNx is derived from NN50, first introduced by
Ewing et al. [9], and later converted to pNN50 by Bigger et al.
[12].

3) RMSSD: RMSSD is equal to the square root of the mean
squared difference of successive NNs. It is also a widely used HRV
marker [13].

B. Frequency Domain Based Markers

The most widely used frequency domain based HRV marker is
LF/HF [14]. This marker is derived from the spectral analysis of the
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heart rate, where LF is the low frequency region ranging from 0.04-
0.15Hz and HF ranging from 0.15-0.4Hz. The power distribution or
the frequencies allotted for the LF and HF bands are not necessarily
same. The variations in the bands are caused by the autonomic
modulation of heart period [15].

II. PROTOCOL

A. Subject Population

This study was approved by the Birla Hospital and Research
Center Ethics committee at Satna, India. Informed consent was
obtained from all subjects participating in the study. The target pop-
ulation for this study was males belonging to healthy, (pre)diabetic,
(pre)hypertensive, or in a mixed syndrome category. No subjects
with other form of active diseases were specifically targeted. A
sample of 253 subjects (average age ± SD= 48±11.59, average
BMI ± SD = 25±4.16). The sample was distributed such that
the study was not centered or evaluated on any age group, to
study stress across a wide variety of population. All subjects were
compensated in form of free blood tests as well as full body checkup
whose detailed report was provided to each of them.

B. Measurements

The study targeted determining co-relation of stress with key
markers of wellness, especially key cardiometabolic riskmarkers
(hypertension, blood glucose, lipids, obesity, etc.). This paper only
details relevant stress quantification. The subjects were grouped
in different categories based upon an initial screening by the
hospital physicians which was confirmed and refined by subsequent
medical tests (pathology testing and blood pressure measurements).
Per protocol, subjects were called fasting at 9AM for a blood
draw (fasting blood glucose, glycosylated hemoglobin, and lipids).
This phase was followed by clinical examination that included a
detailed medical history along with resting heart rate and resting,
average, blood pressure by automated oscillometric method. In the
subsequent phase, an array of anthropomorphic measurements were
made to quantify known markers of obesity. This included BMI,
abdominal, waist and hip circumference as well as subcutaneous fat
measurement via four point skin fold calipers. Also, an advanced
Omron smart weighing scale [16] was used to determine fat and
muscle composition, including visceral fat, using bio-electrical
impedance.

C. Mobile Psychophysiological Monitoring

Following, the subjects were wired with the Zephyr BioHarness
chest strap [17], synchronized to our experimental mobile healthcare
platform named “Sprout”. The strap containing the dry electrodes
is worn on the chest and the embedded sensor transmits data
using bluetooth to the sprout. Sprout collects, timestamp and stores
the data. Any device connected to the sprouts’ wifi network can
view the data transmitted in real time. The following biomarkers
were collected: EKG, Respiration, Galvanic skin response (GSR),
Skin temperature, Posture and Movement via accelerometry. All
sensor data were wirelessly transmitted to the mobile platform.
The subjects’ monitoring using this platform was divided into three
phases - normal, stress and relaxation.

The normal (baseline) phase was of 40 minutes duration and
consisted of the subject sitting comfortably on a couch with news-
papers and magazines to read. The stress phase of the monitoring
was of 20-minute duration. During this period, a reasonably difficult
analytical test was given to the subjects, which had to be solved in
the stipulated duration. The score would yield a purported financial
reward of free medical examination including stress/relaxation

profile.1 An examiner would intermittently and professionally but
curtly remind the remaining time. A stopwatch was placed in front
of the subject, a continual reminder of the dwindling time.The
method of stress induction was similar to the methods used by
[7]. The relaxation phase was of 10 minutes duration in which
subjects asked to practice deep breathing for 5 minutes followed
by meditation for 5 minutes.

III. DATA DRIVEN HEALTH CARE PLATFORM

Our data-driven healthcare platform (Sprout platform) has been
developed for real-time biomarker data collection and analysis. It
comprises three components: a mobile data aggregation and analysis
device; a software stack for real-time recording, synchronization,
sanitization and analysis of multiple wired or wireless bio-sensor
data streams; and a collection of sophisticated applications for real-
time data visualization which enables active monitoring of protocol
compliance.

A. Sprout Mobile Device

The Sprout hardware is based on a powerful 600MHz ARM
Cortex A8 CPU with 512MB of RAM and utilizes microSD
memory cards for data storage. It was designed for continuous,
interrupted recordings and can connect to biosensors via 3 Wireless
protocols (specifically Bluetooth 2.1, 802.11bg WiFi and TI low-
power SimpliciTI RF) as well as three USB 2.0 host ports and 3
analog ports. A total of 15 off-the-shelf sensors (including ECG,
SpO2, BP, breathing, pFlow, Galvanic skin Response, temperature,
weight-scale, posture and accelerometry sensors) have been inter-
faced to it.

The Sprout software stack is built on top of Linux 3.0. It provides
abstractions for integrating hardware sensors as well as virtual
(meta) sensors. It simplifies the creation of meaningful analytics
by relieving the developer from low-level hardware details and
simplifies the task of data cleanup and synchronization. Analytics
metasensors continuously run on the mobile device and are stored
for further analysis or visualization. The platform facilitates starting
/ stopping meta-sensors at real-time without affecting the rest of
the system. The device runs web services through which a user can
observe the recorded datasets at real-time via web applications as
well as native iOS and Android applications.

IV. RESULTS

We present our results on Table I and Figure 1. We report
means and standard deviations for four biomarkers, namely pNN50,
SDNN, RMSSD, LF/HF. Results are presented on the complete
sample size, as well as across different cohorts, based on health
conditions. Specifically the cohorts (253 subjects) details are:
Normal (54), Diabetic-Hypertensive (41), Diabetic-Prehypertensive
(24), Only-Diabetic (29), Only-Hypertensive (25), Only-Prediabetic
(26), Only-Prehypertensive (33), Prediabetic-Hypertensive (11) and
Prediabetic-Prehypertensive (10).

As is evident from the data presented, different markers may
perform better for different stress / relaxation phases and across
different cohorts. There is no single method that is able to clearly
quantify acute stress across all cohorts and conditions.

Figure 1 gives ROC (Receiver Operator Characteristic) graphs
which show how sensitivity varies with the threshold (minimum
change, per subject, from normal phase for the event to be tagged

1different versions of tests were at hand to suit a wide dispersion in the
education profiles of the participants.
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Cohort pNN50 SDNN RMSSD LF/HF
µ σ µ σ µ σ µ σ

N
O

R
M

A
L

P
H

A
S

E

ALL 0.08 0.12 188.8 375.1 25.52 15.33 10.41 23.81
N 0.11 0.135 114.628 109.254 28.545 15.696 2.085 2.218

DH 0.063 0.101 252.438 19.119 25.969 14.528 4.289 7.037
DPH 0.057 0.123 116.016 124.352 23.05 17.093 2.538 1.986
OD 0.049 0.082 143.93 104.727 22.233 13.285 2.074 1.025
OH 0.085 0.102 172.091 142.251 28.864 14.526 2.068 1.675

OPD 0.074 0.153 103.203 86.281 25.683 21.087 80.13 9.853
OPH 0.061 0.075 126.71 98.396 23.626 11.953 1.956 0.943
PDH 0.065 0.113 143.006 108.377 22.93 16.841 4.589 7.776

PDPH 0.058 0.055 75.969 29.27 23.46 10.177 2.29 0.918

S
T

R
E

S
S

P
H

A
S

E

ALL 0.07 0.12 124.08 237.35 24 17.43 10.32 26.18
N 0.1 0.133 92.344 81.691 27.612 17.321 1.045 0.797

DH 0.067 0.128 136.646 19.119 24.617 20.596 2.046 1.976
DPH 0.057 0.13 82.763 87.746 21.632 19.677 1.87 1.542
OD 0.052 0.096 110.958 108.142 20.431 14.801 1.685 0.924
OH 0.079 0.125 103.312 84.727 24.065 16.41 3.893 6.237

OPD 0.058 0.141 82.723 77.641 23.129 20.731 87.516 12.495
OPH 0.069 0.088 120.962 89.724 25.074 14.128 1.24 1.211
PDH 0.025 0.035 82.723 78.334 17.851 10.195 1.561 0.865

PDPH 0.043 0.067 134.873 211.457 20.826 10.95 1.093 0.437

D
E

E
P

B
R

E
A

T
H

IN
G

P
H

A
S

E ALL 0.11 0.14 114.37 120.77 29.27 18.89 9.55 24.9
N 0.154 0.157 105.974 92.448 33.417 18.197 1.100 0.742

DH 0.108 0.146 93.276 91.792 29.646 21.584 1.806 1.436
DPH 0.128 0.173 117.012 109.135 31.798 22.801 1.247 1.187
OD 0.063 0.090 90.507 89.649 23.203 13.657 1.623 1.209
OH 0.076 0.104 138.678 124.643 24.084 14.145 1.656 1.357

OPD 0.084 0.167 132.042 231.522 27.310 22.022 82.761 14.845
OPH 0.108 0.121 144.915 116.943 29.905 17.679 1.241 0.724
PDH 0.155 0.204 125.745 114.522 35.765 22.974 1.413 0.925

PDPH 0.050 0.035 68.484 15.569 23.394 7.461 1.483 0.673

M
E

D
IT

A
T

IO
N

P
H

A
S

E

ALL 0.09 0.13 139.36 378.5 26.78 17.36 9.31 23.1
N 0.131 0.141 86.914 78.188 29.995 15.5 1.426 1.253

DH 0.082 0.119 266.631 819.937 26.638 17.328 2.536 3.413
DPH 0.058 0.125 73.678 63.394 22.573 18.594 1.577 1.021
OD 0.055 0.099 109.214 160.215 23.518 14.402 1.413 0.987
OH 0.087 0.127 145.57 157.761 26.145 15.901 1.965 1.781

OPD 0.084 0.182 92.411 87.305 25.793 21.623 77.479 11.27
OPH 0.086 0.108 191.614 458.668 27.474 17.055 1.509 1.041
PDH 0.163 0.21 154.172 127.031 34.155 27.625 1.687 1.475

PDPH 0.043 0.037 75.798 30.959 22.338 7.089 1.719 0.899

TABLE I
MEDICAL CONDITION BASED SEGREGATION OF SUBJECTS AND PERFORMANCE OF VARIOUS STRESS MARKERS IN NORMAL, STRESS, DEEP

BREATHING AND MEDITATION PHASES. LEGEND: N = NORMAL, D = DIABETIC, H = HYPERTENSIVE, P* = PRE-*, O*=ONLY-*.

as a stress event for a given marker). The ROC graphs can be
used to measure the allowed threshold (and hence tolerable noise
level) for a desired sensitivity. Our data shows that such thresholds
indeed differ between various markers. It is clear that the popular
frequency domain method LF/HF does not offer enough noise
resilience or sensitivity in the mobile context. LF/HF does not
perform as well to quantify stress as even a small amount of
noise can significantly corrupt the FFT results. Further, our results
suggest that in absence of sustained acute stress, the sympathovagal
balance cannot be easily studied by frequency spectrum analysis
especially when the measurement windows are very large (20
minutes stress measurement in our case). Time domain methods
appear more consistent though the most popular method, pNN50
is not robust. A cutoff of 50ms appears excessive and can lead to
a situation where either the marker is unable to capture any stress
since there are no corresponding data points, or arbitrary (becoming

a very sensitive marker for stress owing to the fact that even a
modest increase in the samples will have a disproportional effect
on corresponding analysis.) Time domain methods of SDNN and
RMSSD appear more stable markers, effective across a variety of
cohorts (with the SDNN method having better sensitivity at higher
thresholds), and suitable for real-life application especially in a
mobile context. To develop a more robust marker, real time filtering
and signal stitching should be considered. A study on the sensitivity
of differnet markers towards real-life noise and distortions can be
helpful. Present methods of HRV measurement are based on the
disease quantifying markers. A new measure of HRV, which is more
robust and sensitive for stress measurement can also be explored.

V. CONCLUSION

There is a paucity of large scale trial data comparing effectiveness
of academically established stress markers. Further, there is minimal
information about their robustness in a mobile setting using wear-
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Fig. 1. ROC graphs for pNN50, SDNN, RMSSD and LF/HF.

able and affordable sensors. This paper presented a study of 253
subjects which provides crucial data to address above shortcomings,
and overview of analysis results comparing the most popular time-
domain and frequency-domain Heart Rate Variability biomarkers.As
is evident from the data presented, different markers may perform
better for different stress / relaxation phases and across different
cohorts. There is no single method that is able to clearly quantify
acute stress across all cohorts and conditions. Time domain methods
were found to be more robust and effective than frequency domain
approaches. A better understanding of how popular stress models
perform based on both context as well as cohort characterization
should have a significant impact in increasing their utility in real-
life settings. We hope that this comparison will help characterize
the relative performance of these markers and act as a reference
point for further developing more robust stress markers. Such a
marker would combine robustness with its capability to capture
physiological characteristic of diverse disease traits.
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