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Abstract

Although mobile health monitoring where mobile

sensors continuously gather, process, and update sen-

sor readings (e.g. vital signals) from patient’s sen-

sors is emerging, little effort has been investigated in

an energy-efficient management of sensor information

gathering and processing. Mobile health monitoring

with the focus of energy consumption may instead be

holistically analyzed and systematically designed as a

global solution to optimization subproblems. We pro-

pose a distributed and energy-saving mobile health

platform, called mHealthMon where mobile users pub-

lish/access sensor data via a cloud computing-based

distributed P2P overlay network. The key objective is to

satisfy the mobile health monitoring application’s qual-

ity of service requirements by modeling each subsystem:

mobile clients with medical sensors, wireless network

medium, and distributed cloud services. By simula-

tions based on experimental data, we present the pro-

posed system can achieve up to 10.1 times more energy-

efficient and 20.2 times faster compared to a standalone

mobile health monitoring application, in various mobile

health monitoring scenarios applying a realistic mobil-

ity model.

1. Introduction

Many successful health care applications based

on mobile computing and communication technologies

have been presented in the literature. Lv et al. [1] uti-

lizes wireless body sensors and smart phones to monitor

the wellbeing of the elderly. The key enabler is a smart-

phone that automatically alerts preassigned people who

could be their family and friends, and call the ambu-

lance of the emergency center. As an example of more

sophisticated health monitoring systems, Chowdhury

et al. proposed MediAlly, a middleware for support-

ing energy-efficient, long-term remote health monitor-

ing, where sensor data is collected using physiological

sensors and transported back to the middleware using

a smartphone [4]. Smartphones with medical sensors

attached to patients can perform publish/access medi-

cal sensor updates such as vital signals, measure per-

sonalized estimates of impact and exposure, and share

patient’s live health information. mHealthMon is sim-

ilar in a spirit of a middleware-based system but it is

fundamentally different in terms of an energy-saving

paradigm.

In SensorBase [9], back-end servers (called repub-

lishers) further process sensor data to enable sensor data

searching. SensorMap [10] is a web portal service that

provides mechanisms to archive and index data, process

queries, and aggregate and present results on geocen-

tric Web. mHealthMon differs from these approaches in

that it focuses on large-scale participatory sensing and

facilitates location-sensitive information sharing via a

scalable structured P2P overlay that efficiently sup-

ports location-sensitive data publish/retrieval. Similar

to other works such as GeoServ [8], mHealthMon is a

two-tier mobile health monitoring platform that exploits

the P2P Internet infrastructure.

The approaches from MAUI [5], CloneCloud [3],

Cloudlets [7], and Zhang et al. [14] seem promising be-

cause their model incorporates a cost model for decid-

ing best execution configuration, and they can be also

adapted dynamically according to real-time conditions.

The approach in [15] is similar to above, but it lacks

of dynamic adaptation of the computation between mo-

bile devices and cloud services. Prior work mostly fo-

cused on saving energy consumption on mobile devices;

in contrast, mHealthMon provides analytical cost mod-

els to optimize the entire energy consumption including

network and cloud at the same time.

The key contributions are summarized in the fol-

lowing. We explicitly model the performance of mobile

health monitoring system – mobile clients with medical

sensors, wireless network medium, and cloud services

– using two aspects: computation and communication

cost. We propose a distributed optimized solution of

complex mobile health monitoring: program partition-
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Figure 1. A high-level overview of smartphone­
based mobile health network architecture in 
a heterogeneous wireless network interfaces 
scenario. 

ing , network resource allocation, and network selec­
tion problem. We propose a location-aware sensor data 
retrieval scheme called mHealthMon that supports ge­
ographic range queries, and a location-aware publish­
subscribe scheme that enables energy-efficient multi­
cast routing over a group of subscribed users. We pro­
totype energy-optimized mobile health monitoring ap­
plications to prove the feasibility of our proposed tech­
niques in various sensing scenarios applying a realistic 
mobility model utilizing parallel offloading. 

2. System Model 

Our prior work, GeoServ [8] mainly focuses on 
how to store in and retrieve sensor data from exter­
nal storage systems, where the location-awareness is 
the main consideration on its data management over an 
overlay-based P2P routing. Thus, GeoServ is a general 
purpose urban sensing P2P storage with no considera­
tion of performance modeling, energy saving and opti­
mization, and computation offloading. 

We apply a regression theory in modeling computa­
tion of mobile applications based on empirical measure­
ment data. To model heterogeneous air interfaces such 
as WLAN, cellular network, and WiMAX, we apply a 
state-of-the-art mathematical network model based on 
empirical system parameters [12]. 

2.1. Computation Model 

We define a software program as a set of basic func­
tional blocks (BFB)s, where a basic functional block 
corresponds to a single method or function in a pro­
gram. Each BFB consists of a set of inputs as required 
knowledge of computation, and a set of outputs as an 

Figure 2. We Figure 3. 
developed A screen­
an iOS-based shot for a 
mobile health list of avail-
monitoring able medical 
application: sensors via 
a screenshot Bluetooth. 
for patient's 
EHR. 

Figure 4. A 
screens hot 
for sensor 
feeding (sys­
tolic/diastolic) 
from a blood 
pressure 
sensor. 

outcome of computation. These include both global and 
local variables defined in a program. 

In order to model the performance of mobile sens­
ing applications in heterogeneous hardware environ­
ments, we apply a regression theory to derive statistical 
inference models, by taking a small number of samples, 
where each sample denotes the execution tin1e of a BFB 
on a particular machine. In our regression model, a re­
sponse is modeled as a weighted sum of predictor vari­
ables. By adopting statistical techniques, we then assess 
the effectiveness of model's predictive capability. 

2.2. Wireless Network Model 

We consider multiple wireless network interfaces 
scenario where heterogeneous radio access technolo­
gies (RAT)s such as WIFI, WiMAX, UMTS, and GSM 
work together with their overlapping network cover­
age in a given area. According to many researchers 
such as [12] and [11], RATs can be largely character­
ized into two categories based on means to share their 
channels: interference constrained RATs and orthogo­
nal RATs [12].. In this paper, we only consider the lat­
ter. 

3. Optimization Problem Formulation 

We mainly solve different problems: a program 
partitioning program (Pl), network resource allocation 
problem (P2), network selection problem (P3), and 
cloud resource allocation problem (P4). In this work, 
we mainly focus on the first three. A solution to the par­
titioning problem gives an optimal set of code offload­
ing decisions in terms of computation cost and commu-
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nication cost, while a solution to the network resource

allocation problem gives an optimal allocation strategy

toward maximizing the utility of network systems. It is

obvious that solving the latter problem provides a way

to choosing the best communication cost in the former

problem.

3.1. Program Partitioning Problem

Let us consider a mobile application A and its call

function graph G = (V,E), where each vertex v ∈V de-

notes a method in A. An invocation of method v from

one another u thereby is denoted by an edge e = (u,v).
We annotate each vertex with the execution time Tv of

the method v and each edge with the data transfer time

Tu→v incurred when the method v is offloaded from the

method u. We reconstruct a new graph G′ = (V ′,E ′)
from G by adding corresponding offloading methods to

V . The code partitioning problem based on G′ can be

formulated as,

min ∑v′∈V ′ Tv′ +∑e′∈E ′ Te′:u′→v′ ,

s.t.
∑v′∈V ′ Tv′+∑e′∈E′ Te′

∑v∈V Tv+∑e∈E Te
≤ 1,

Tv′ ≥ 0,Tv ≥ 0,Te′ ≥ 0,Te ≥ 0 (1)

The calculation of computation cost Tv,Tv′ depends

upon the performance estimate ŷi for each basic func-

tional block (BFB) v,v′. Furthermore, the calculation

of communication cost incurred due to code offload is

given by,

Tv′ = nv′ ×Dm,b, (2)

where the assigned data rate is denoted by Dm,b for

a mobile client m in BS b, and the size of data to be

transferred due to offloading for BFB v′ is given by nv′ .

We formulate further problems for how to assign the

data rate to each mobile client in Section 3.3 and how

to select one of the heterogeneous network interfaces in

Section 3.2. The problem formulated in Equation 2 con-

sists of a concave objective over linear constraints, and

it becomes convex. Therefore, there are various convex

optimization algorithms to solve it from [16].

3.2. Network Resource Allocation Problem

We consider a utility metric as the effectiveness

of allocated resources of networked systems in our

optimization problem as U = ∑m ∑b Dm,b. In order to

deal with fairness in resource allocation among mo-

bile clients, the utility function with a weight variable

w can construct the α proportional fairness as U =

∑m
wm

1−α
∑b D1−α

m,b , where 0 ≤ α < 1. Now, we present

an optimization problem as,

max U,

s.t. ∑m
Dm,b

D̄m,b
≤ Γb,

∑b Dm,b ≥ Dmin,b,

Dm,b ≥ 0, (3)

where Dmin,b is the minimum data rate assigned to

mobile clients. Our goal is for a network operator to

maximize the sum of utility of all mobile users in all

base stations. Note that Equation 3 consists of a con-

cave objective over linear constraints and thus is con-

vex. That means there exists various algorithms to solve

the problem immediately [16].

3.3. Network Selection Problem

The network system model in this paper considers

multiple wireless network interfaces with different ra-

dio access technologies (RAT)s such as WIFI, WiMAX,

UMTS, and GSM having different capacity constraints

and channel conditions. The problem we would con-

struct is a decent network selection strategy that min-

imizes the expected mean cost of data transfer from a

mobile client to a target offloading agent such as cloud

machines. We develop a simple heuristic-based strat-

egy S(m,b, l) ∈ S where it takes into account current

workload lm ∈ L for a mobile client m ∈ M in a base

station b ∈ B which corresponds to the size of data to

be transferred over the wireless network medium. The

strategy S(m, l) selects the best RAT which can support

its workload l satisfying QoS requirements. We assume

each mobile user belongs to one of K different user

classes. With probability pk, an arriving mobile user

is characterized by a specific class k in the network sys-

tem. Let X̄k ∈ X denote a set of states loaded for class

k specifying whether it allows the admission of a mo-

bile user in class k to one of the RATs r ∈ R. Therefore,

the strategy S(m,b,l,r) can be defined as S(m,b, l,r) :=
max(lm ×Dm,b,r), ∀lm ∈ L∀m ∈ M,∀b ∈ B,∀r ∈ R. If

there are several S(m,b, l,r) that maximizes the perfor-

mance of data transfer cost, among them the strategy

chooses the one which is equivalent to the RAT having

minimum current total workload.

3.4. Algorithm

We present an algorithm used in mobile cloud com-

puting operated by data centers. In the dynamic sce-

nario, mobile clients or users request and their mobility

are subject to a given mobility and traffic model rather
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narios are measured and pre-

sented with 95 percent confi-
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Mon with various offloading
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fidence intervals.
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Figure 7. Energy consump-

tion [Watts] for the simula-

tion period is presented. The

total amount of energy con-

sumed by each cell is aver-

aged.

Data: mobile client m ∈M, mobile application

a ∈ A, BFB i ∈ a, BS b ∈ Br, RAT r ∈ R

cloud server j ∈ J

Result: Optimal offloading graph on optimal

resources assigned: Ĝ′

while There exist jobs to be scheduled do

U = solve P2(D);

Dm,b = solve P3(U,D);

(ŷ,P) = solve P4(A,J);

Ĝ′ = solve P1(m,a,Dm,b, ŷ);

end

Algorithm 1: mHealthMon: an orchestrated ap-

proach to four different optimization algorithms to

achieve a global optimization objective in a dis-

tributed manner.

than stochastic processes. Algorithm 1 solves P2, P3,

P4, and P1 in order until the mobile cloud computing

facility based on data centers ends.

4. System Evaluation

Evaluating the performance consists of two parts:

the performance in a mobile device and the one in a

cloud machine. The former is presented in the compu-

tation cost and communication cost in five offload sce-

narios: local execution (L) in a mobile client, offloading

with 1-5 concurrent requests (O1-O5). Note that O1

represents serial offloading similar to MAUI [5], [3],

and Cloudlets [7]. For our proposed scheme, O2-O5

stands for asynchronous parallel offloading with the dif-

ferent number of concurrent parallel requests.

4.0.1. Evaluating Mobile Clients. This section ana-

lyzes computation cost and communication cost in time

and energy when applying optimization strategies pre-

sented in this paper. We pose a fundamental question

about whether or not there exist real benefits when of-

floading code. Figure 5 compares the execution time

between the mobile and the cloud by applying to a typ-

ical mobile health monitoring application. Figure 6

compares energy consumption in the same settings. As

discussed, we also study how concurrent offloading re-

quests help save time and energy in various scenarios:

O1-O5. ROB presents relative offload benefits, compar-

ing each offloading case with the non-offloading case

L. We present the proposed system with the help of 5

parallel execution (O5) can perform up to 20.2 times

faster and 10.1 times more energy-efficient compared

to a standalone mobile health application L. We also

observe that our work (O2-O5) outperforms over non-

parallel offloading schemes (O1) such as MAUI [5] and

CloneCloud [3], resulting in at least 2 times better both

in time and energy. We observe the overall time sav-

ing and energy saving rate increases as the number of

concurrent requests increases. This is done by a non-

blocking (asynchronous) offload request.

4.0.2. Evaluating Cloud Servers. For mobile scenar-

ios, we use VanetMobiSim for mobility trace for the

duration of 300s [13].. We use the network area size

of 12800m×12800m. The Westwood topology from

Tigermap (TGR06037, Los Angeles [2]) represents the

area in the vicinity of the UCLA campus. We discretize

the network area into grids for the Hilbert curve-based

linearization, resulting 100×100 grids. Geographic

range queries are made by specifying a square area (e.g.,
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4×4 grids). Each mobile node reports sensor data to its

associated overlay node every second. The size of data

is set to 128 Bytes (e.g., GPS sample, timestamp, ac-

celerometer samples). We assume that each node knows

its accurate geographic coordinate and thus can dynam-

ically change their associated overlay node without any

errors (e.g., no bouncing at the boundary). In GeoTable,

the number of long links is set to five, as recommended

in Symphony DHT [6]. Unless otherwise mentioned,

for each configuration we report the average value of

30 runs. For simplicity, orthogonal-based WLAN and

TDMA-based GSM are only considered. Unless spec-

ified, the network selection follows a strategy given in

Equation 6 and network parameters form [11]. We as-

sume that each BS knows its accurate geographic coor-

dinate and thus can dynamically change their associated

BS without any errors (e.g., no bouncing at the bound-

ary). In our simulation, each mobile client randomly

chooses one of four mobile applications. The duration

of execution time and energy of each mobile application

is given by experimental results. When one application

is done, another random assignment is made automati-

cally during our simulation period.

4.0.3. Large-Scale Simulation. Figure 7 presents the

energy consumption with six different offloading sce-

narios in the case of 128×128 grid cells. We assume

each cell has only one base station. As a ground truth,

we first show local execution of mobile health applica-

tions with no offloading capability, resulting in no en-

ergy saving. The mobility is generated by the Vanet-

Mobisim simulator. By applying our proposed offload-

ing technique with concurrent request capability, we see

clear improvement of time and energy saving in a static

viewpoint. From O2 to O5 scenarios, we apply paral-

lelism with the different number of concurrent requests,

resulting in slightly 2x more energy saving compared

to local execution only. This means applying our op-

timization techniques saves lots of energy by utilizing

cloud

5. Conclusion

We proposed a distributed and energy-saving mo-

bile health monitoring platform. By simulations, we

showed the proposed system can perform up to 10.1

times more energy-efficient and 20.2 times faster com-

pared to a standalone mobile health application. We

also compared our work with non-parallel offloading

schemes such as MAUI [5] and CloneCloud [3], result-

ing in at least 2 times better both in time and energy.
1
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