
  

  

Abstract—Estimation of joint torques through 

musculoskeletal models and measurements of muscle 

activations can be used for real-time control of robotic devices 

for rehabilitation. Many works developed models for analytic 

one joint motion, but less are found that develop models for 

functional multijoint movements. In this work we develop a 

methodology for tuning and optimizing Hill-based EMG-driven 

models oriented to the force control of robotic exoskeletons for 

the upper limb, selecting the more suitable parameters to be 

optimized. The model is tuned from experimental data obtained 

from healthy people. The torques estimated by that model will 

serve as reference for force-based control of an exoskeleton for 

rehabilitation. 

 

I. INTRODUCTION 

Many works have been developed related to single-joint 
movements of the human limbs. They are useful when the 
objective is the study of analytic motions for rehabilitation of 
disabled people. But in the daily life activities the motions are 
multi-joint, and then both the perception systems of 
biosignals and the control of prosthetic devices have to deal 
with that interaction. [8] addresses a EMG-driven 
neuromusculoskeletal model, based on the Hill one,  for 
coordinate movements of legs. This model improves the 
models used for single-joint movements but that lead to 
unrealistic estimations of forces when applied to multi-joint 
motions. In [5] an analysis of the influence of interaction 
torques between the elbow and shoulder joints driving a 
multi-joint movement of the arm is developed. This effect is 
reflected in the muscle activation obtained from sEMG 
measurements. [3] highlights the importance of torque 
interaction between the joints. The results suggest that errors 
in the use of interaction torques will result in kinematic 
deficits. The mismatch in interaction appeared in patients 
with different neurological diseases is related to abnormal 
muscle torques.  

As a consequence of all those studies, it seems very 
important to develop muscle activity models that explicit or 
implicitly consider the joint torque interactions in coordinate 
movements. In [1] a Hill-based optimized model for a single-
joint elbow flexion-extension movement was presented. In 
this work we extend the model to multi-joint arm movements 
in a drinking task. The objective is to optimize the parameters 
of Hill-based models for the joints, shoulder, elbow, and 
wrist, taking into account the activation of the muscles 
involved, computed from sEMG signals. An analysis and 
assessment of the proposed models are achieved from 
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experimental measurements from four healthy persons. The 
models have been implemented in the Neuroestimator (NE) 
briefly described in [1], which takes a part of the control 
system of a Neurorobot (NR) – Neuroprosthetic (NP) device 
developed for rehabilitation tasks. The Neurorobot (NR) will 
control the rehabilitation movements under the paradigm 
assist-as-needed for patients. The developed models will be 
used as patterns for the control of the upper limbs. 

II. EXPERIMENTAL PROTOCOL 

The experimental data have been obtained from healthy 
and disabled people in the Hospital de parapléjicos de 
Toledo (Spain). The experimental protocol [7] was approved 
by the local ethics committee and all subjects signed an 
informed consent form before joining the study. For the work 
presented here four healthy people have been selected to 
compute optimal models for coordinate movements of the 
upper limbs, which will be used as a pattern for the control 
system in the rehabilitation of patients. 

A. Subjects 

Four healthy subjects with the following characteristics: 

TABLE I.  SUBJECTS CHARACTERISTICS 

Subject Age Gender Weight Height 

1 22 Female 65 1.6 

2 22 Male 79 1.8 

3 27 Female 57 1.68 

4 28 Male 81.5 1.88 

B. Data collection 

Kinematic data are obtained with the three-dimensional 
computer CODA motion analysis-motion (CODA System.6, 
Charnwood Dynamics, Ltd, UK). It is recorded at a 
frequency of 200 Hz. 

The forces and moments are not measured but calculated 
or estimated from the records made by CODA and through a 
biomechanical model (which has dimensions and inertial 
properties of the body segments of trunk, arm, forearm and 
hand) based on rigid body techniques. In the upper limb, the 
forces and moments in joints heavily depend on the weight of 
an external load in hand. During the phase in which the 
subject takes the glass in hand, we have simulated an 
additional load of 0.3Kg in hand. 

Conductive adhesive surface electrodes (Noraxon) were 
placed to measure 8 muscle groups: Posterior Deltoid (PD), 
Middle Deltoid (MD), Anterior Deltoid (AD), Pectoralis 
Major (PECM) (clavicular head), Biceps Brachii, Triceps 
Brachii, forearm flexors, and forearm extensors. 

C. Drinking from a glass 

Drinking from a glass was selected as a functional 
movement involving multiple joints and muscle activation.  
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The subject performed the test seated in front of a table with 
adjustable height dimensions 120x60cm. The angle between 
the backrest and the seat ranged 90-100°. The distance from 
the subject to the table was 20cm. The table was adjusted in 
height so that all subjects started from the same position, the 
arm attached to the trunk, the elbow flexed 90° position, the 
pronation-supination neutral, and the hand resting on the 
surface of the table with medially open palm. Once located 
the subject, he proceeded to take the glass. The glass was 
located at 75% of the maximum range of the subject. 

III. EMG-DRIVEN MODEL TO ESTIMATE JOINT TORQUES 

An EMG-driven Hill type model was used for joint torque 
estimation. This model processed sEMG signal as input. A 
scheme of the estimation technique is shown in Fig. 1. 

 

Figure 1.  Joint torque estimation scheme.  

Although only the myosignal activity of the above 
mentioned 8 muscles is measured, 11 muscles involved in the 
movements were modeled to evaluate the model 
performance. As concluded in [4], the inclusion of the 
activity of all these muscles that have a physiological sense 
based on the synergy theory showed its influence in the 
improvement of joint torque estimation. The muscles are: 
Biceps Brachi long head (BIClong), Biceps Brachi short head 
(BICshort), Posterior Deltoid (PD), Middle Deltoid (MD), 
Anterior Deltoid (AD), Pectoralis Major (PECM), Triceps 
Brachii long head (TRIlong), Triceps Brachii lateral head 
(TRIlat) and Triceps Brachii medium head (TRImed), 
Extensor Carpi Radialis Longus (ECRL), Flexor Carpi 
Radialis (FCR). From their normalized neural activation the 
kinetics of four degrees of freedom (DoF) is computed: S1, 
internal rotation of the humerus (shoulder); E1, forearm 
pronation-supination (elbow); E2, elbow flexion-extension 
(elbow); and W1, ulnar-radial deviation of the wrist (wrist). 

Joint kinematics is used to obtain the musculoskeletal 
geometry demanding by the process, both lengths and 
moment arms of each muscle. This information comes from 
[2] and [4]. Using these inputs we adopt a mechanistic model 
[1], to estimate muscle forces, instead of a phenomelogical 
model since we consider that allows a better understanding of 
human movement. 

A.  Parameter optimization and torque estimation 

Some of the parameters to optimize in the EMG-driven 
model are directly related to the measured activity of the 8 

muscles. For the other three no measured muscles, three 
Global Parameters (GPs) were set as factors for BIClong 
activity with respect to the BICshort activity, and for TRIlong 
and TRImed, both with respect to the TRIlat. The fourth GPs 
is a scale geometrical factor. Table II includes all these 
parameters and their initial nominal values [1]. 

TABLE II.  OPTIMIZATION NOMINAL VALUES AND INTERVALS 

 

Muscles 

Parameters 

LC0  

[cm] 

Fmax  

[N] 

α  

[%] 

SPE SSE 

PD 13.67 259.88 58 9 2.8 

MD 10.78 1142.6 58 9 2.8 

AD 9.76 1142.6 58 9 2.8 

PECM 14.42 364.41 58 9 2.8 

BIClong 11.57 624.3 56 9 2.8 

BICshort 13.21 435.56 56 9 2.8 

TRIlat 11.38 624.3 66 10 2.3 

TRIlong 13.4 798.52 66 10 2.3 

TRImed 11.38 624.3 66 10 2.3 

ECRL 8.1 304.89 50 8 3 

FCR 6.28 73.96 58 6 3 

Interval [0.5, 1.5] [0.5, 1.5] [0.8, 1.2] [0.8, 1.2] [0.8, 1.2] 
 

 

 

Nominal values 

Global Parameters 

fBIClong fTRIlong fTRImed fscale 

1 1 1 1 

Interval [0.5, 4] [0.5, 4] [0.5, 4] [0.5, 1.5] 

We use the trust-region-reflective algorithm [6] to 
optimize the 59 parameters: 5 parameters for each muscle 
and 4 global parameters. The parameters in each muscle are: 
SPE and SSE which are the shape factor of the parallel and 
serial element of each muscle (Fig. 1), LC0 the optimal fiber 
length, α the % of fast contractile fibers, Fmax maximal force 
for each muscle. More details about these parameters can be 
found in [1].  

Many methodologies can be applied in order to optimize 
the parameters for estimating the joint torques from the 
experimental data. Due to the complexity of the drinking 
movement, we have grouped them in five phases associated 
to the following events (see Fig. 2): 1) Reaching: time from 
start cycle until it reaches the object (glass). 2) Take-glass: 
time from reaching the object until the glass is caught.  3) 
Glass-mouth: time since the glass has been taken until it leads 
to the mouth. 4) Finish-drinking: time since the glass was 
carried to the mouth until they finish drinking. 5) Release-
glass: distal transport time, including when the glass is 
contacted with the surface of the table until was released. 

The model involves many parameters to be optimized. In 
order to study if the process can be simplified by reducing the 
number of parameters, two kind of optimization have been 
applied:  

Selective optimization: the 11 muscles were clustered in 
their most influential joint: 1) Shoulder: AD, MD, PD, 
PECM; 2) Elbow: BIClong, BICshort, TRIlat, TRImed, 
TRIlong, ECRL; 3) Wrist: FCR. The algorithm is run three 
times separately, first to adjust 4 muscles and GPs with S1, 
secondly to fit the 6 muscles and GPs with E1 and E2 
together, and finally W1 with its only muscle involved and 
GPs. Final GPs are computed as the average of the ones 
obtained in each of the three optimizations. In consequence, 
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this implies that muscles activated with the movement of 
other joint are not considered in the procedure. 

Multijoint optimization: the 11 muscles and GPs are used 
to optimize each DoF. In combined upper limb movements, 
shoulder-elbow-wrist muscles are not correlated with 
alternative movements and all muscles are activated. Here, 
this biarticular muscles phenomenon is taken into 
consideration contemplating all muscles for each DoF at the 
same time. 

 

Figure 2.  OpenSim screenshots of drinking from glass motion, the 

stages: a) Reaching, b) take glass, c) glass-mouth, d) finish-drinking, e) 

release-glass.  In order to extract the geometrical data used in the model, 

OpenSim uses the kinematics given by the CODA equipment. Meanwhile, 

the software allows us to perform a rough visual inspection of how good 
subjects execute the movement. 

In the model training stage we launched the process 
separately with data from the phases 1 to 2, 2 to 3, 3 to 4 and 
4 to 5, using the data from the other phases for model cross-
validation. The objective was to find if there is any stage 
(with its involved movements) more representative than the 
others. Tuning the model with the data from the 2 to 3 
phases, achieves the best results. It leads to believe that, in 
functional movement, the stage used to compute the model 
should be representative enough to obtain the optimal 
parameters and suit the rest of the motion. 

IV. RESULTS 

Fig. 3 depicts the angles and torques for all the degrees of 
freedom of one of the subjects. In green (-) the non-optimized 
Hill model (using generic nominal parameters), in red (--) the 
estimated torques with the optimized model, and in blue (-) 
the torque computed by means a solid rigid skeletal dynamic 
model [7]. Fig. 4 represents the maximal error (Emax) and root 
mean square error (Erms) of the whole task for each subject.  

It can be seen from both figures how the optimized model 
using all the parameters adapts better to the motion pattern 
and torque computed by the dynamic model. Optimizing the 
model only with clustered muscles in each joint exhibits 
higher errors with respect to the theoretical torque computed 
from the dynamic model, as can be appreciated in Fig 4, 
although are always lower than the obtained with the nominal 
parameters. This result matches well and confirms that all the 
muscles associated to joints (shoulder, elbow, wrist) are 
activated, influencing by means of interaction torques in the 
other joints, as also deduced in [3] and [5]. So, they cannot be 
avoided in the optimization process. 

(a) 

(b)  

(c) 

(d) 

Figure 3.  Kinematic and torque profiles for: (a) S1: internal rotation of 

the humerus (positive); (b) E1: forearm pronation-supination (supination 

positive); (c) E2: Elbow flexion-extension (extension positive); (d) W1: 

ulnar-radial deviation of the wrist (ulnar deviation positive). The beginning 
of motion stages are also drawn as vertical lines. 
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(a) 

 
(b) 

Figure 4.  (a)  Maximal error for each subject and degree of freedom. (b) 

Root mean square error for each subject and degree of freedom. The errors 

are higher for the selective optimization (green) that for the multi-joint 

optimization (blue). 

The calculated parameters are optimum for each subject 
and this particular movement. We suppose these parameters 
could work in different types of tasks. However, we cannot 
guarantee they are the optimal for other tasks, may simply 
belong to the sub-optimal parameters group [1].  

Several limitations explain the errors and must be 
considered when using this model. OpenSim model has 
constrained the motion of clavicle and scapula [4], therefore 
the geometrical information could have some inaccuracies. 
Moreover, it is well reported in the literature, and indeed 
happens, that it is difficult to estimate the rotational 
movement from sensors placed on the skin surface due to the 
displacement of the skin markers and sometimes we lost 
visibility of markers. This cannot be avoided due to the 
movement in question. So it is highly possible that at some 
brief moment the CODA computed an interpolation. Even 
though errors improve in magnitude the ones reported until 
now in similar works, it is required a deeper analysis to 
determine real constraints in terms of torque control when 
implementing the model in a Neurorobot. 

V. CONCLUSION 

The rehabilitation sessions to restore motor disorders, due 
to Cerebrovascular Accidents, Cerebral Palsy or Spinal Cord 
Injury, include wide range of task, not only analytical but 
also functional movements. Therefore, it is essential that the 
Neuroestimator manages multijoint movements to keep the 
system accuracy and the smoothness of motions. 

As referenced in the literature, in coordinate motions for 
upper limbs shoulder-elbow-wrist muscles are not correlated 
with alternative movements and all the muscles are activated. 
This explains the better performance obtained in the 
presented experiments when all the involved muscles for 
each degree of freedom are considered in the measurement 
and the optimization. It takes implicitly into account the 
interaction torques between joints, needed for reaching 
smooth and healthy human-like motions. The torque 
estimated in real time by the Neuroestimator using this model 
will yield good setpoints for the force-based control of the 
Neurorobot, because it will be the force patterns for the 
rehabilitation movements guided by the robot. 

This preliminary study is being extended in an on-going 
work in several lines: use of data from more healthy people 
to strongly validate the model as torque pattern for 
rehabilitation of disabled people; assessment of the available 
data from disabled people to analyze their kinematic and 
torque profiles. As EMG activity of patients is altered, the 
model will estimate abnormal joint torques, which might be 
resolved with the development of Neurorobot control 
strategies based on the patterns and on the measured data for 
compensation and adaptation activities for individuals with 
disorders. We hope that this study will contribute to better 
understand the generalization of muscle models for a wide 
range of rehabilitation tasks to estimate control parameters of 
hybrid rehabilitation devices and use them to adapt the 
motion strategy variables. 
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