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Abstract— The spring-like behavior is an inherent condition
for human walking and running. Since leg stiffness kleg is a
parameter that cannot be directly measured, many techniques
has been proposed in order to estimate it, most of them using
force data. This paper intends to address this problem using
an Extended Kalman Filter (EKF) based on the Spring-Loaded
Inverted Pendulum (SLIP) model. The formulation of the filter
only uses as measurement information the Center of Mass
(CoM) position and velocity, no a priori information about the
stiffness value is known. From simulation results, it is shown
that the EKF-based approach can generate a reliable stiffness
estimation for walking.

INTRODUCTION

Understand and emulate human gait has been one of the

main goals in different scientific areas such as biomechanics,

neuroscience or robotics.

Although several models have been proposed for repre-

senting legged locomotion, most of them agree in consider-

ing the elastic behavior of legs as a crucial characteristic that

represents the biomechanics of legged systems. This asser-

tion is based on the fact that humans and other vertebrate

animals exhibit bouncing gaits like hopping, running and

walking [1].

The Spring-Loaded Inverted Pendulum (SLIP) model, first

proposed by [2] and then studied by others [3],[4], is a

walking and running template that is capable of reproducing

some important characteristics of human locomotion, such

as the Center of Mass (CoM) trajectory and the Ground

Reaction Forces (GRF). In this model, both legs act like

massless springs attached to a mass located at the body

CoM. The system dynamics are governed by the forces that

the spring legs exerted on the body mass during the stance

phase, that is, the moment where the feet make contact with

the ground.

Like this model, and many others using spring-like legs,

the choice of the value of leg stiffness directly impacts

on the the resultant gait solution. In [5], different periodic

walking solutions were obtained by means of varying the

SLIP’s model parameters. These solutions reveal different

behaviors in terms of robustness against disturbances and

energy efficiency.

Moreover, when the SLIP model is used along with experi-

mental data, considerable differences between the model out-

put and the measured GRFs and CoM are observed [6],[7].

This discrepancy could be caused by some differences in

the parameters definition. For the case of leg stiffness, most
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calculation uses the vertical force-leg’s compression ratio.

This definition could lead to different results if different

definition of the leg’s length are used [8].

This paper presents a different approach of calculating

leg stiffness using an extended kalman filter (EKF). The

formulation is based on the equations of motion of the SLIP

model. The CoM trajectory is considered as the measurement

information. Simulation results for different walking solu-

tions using different stiffness values are presented in order

to validate the filter performance.

I. METHODS

A. Bipedal Spring-Mass Model

According to the SLIP model (see Figure 1), a walking

pattern can be generated by two massless legs represented

by two springs with fixed rest length L0 and stiffness kleg.

The body is represented by a point mass m located in the

body center of mass r =
[

xCoM yCoM

]T
. During stance,

the forces F1,2 are generated from the springs directed from

the foot points rFP =
[

xFP yFP

]T
to the body mass m.

The swing leg doesn’t affect the dynamics of the whole

system since it’s massless and generates no force.

A single step is defined by a single support of one leg,

followed by a double support phase, and finally a single

support of the leg which was initially in a swing phase. The

first single support is initiated at mid-stance, i.e., when the

stance leg is vertically oriented with respect to the ground,

condition that is obtained again at the end of the final single

support. This is the highest point reached by the CoM, also

called the apex height [3].

The beginning of the double support phase is given by the

landing event, which is the instant when the swing leg hits

the ground describing an angle of attack α0 with the surface.

The equation of motion of the system is defined as [5]:

mr̈ = F1 +F2−mg (1)

where g =
[

0 g
]T

corresponds to the gravity vector.

The force of any leg during stance is

F1,2 = kleg

(

L0

‖r− rFP‖
−1

)

(r− rFP) (2)

The transitions from stance to swing is detected when any

leg force has decreased to zero, while the swing-to-stance

transition is reached when the current swing leg has touched

the floor and the difference yCoM−yT D = 0, where the touch-

down height is defined as yT D = L0sin(α0). The parameters

of this model are the body mass m, the leg’s rest length

L0, the angle of attack α0, and the leg stiffness kleg. In
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Fig. 1. SLIP model. A single step is defined by a sequence of single a
double support phases and it begins when the CoM position is at the apex
height. The step ends when the same condition is reached.

a symmetric solution both legs are considered with equal

length and stiffness.

B. State and Parameter Estimation

The Kalman filter (KF) is an optimal solution for the

estimation of states in a linear stochastic system, where

its dynamics can be represented by models which describe

its process and measurements [9]. The Extended Kalman

Filter (EKF) is an extension of the original KF for the

nonlinear systems. Besides estimating the system’s states,

these filtering techniques could be also applied for parameter

estimation, where the unknown parameter is considered as

an additional state to be estimated.

As mentioned above, the EKF is used in this work for

the estimation of the SLIP model’s states, as well as the

identification of kleg. The second-order system presented in

(1) and (2) can be written using a state-space notation:

xi =Fθ
i−1(λ )xi−1 +wi−1 (3)

yi =Hixi + vi (4)

Equation (3) represents the process function, derived from

equations (1) and (2). The state vector is defined as as

x =
[

xCoM yCoM ẋCoM ẏCoM kleg

]T
(5)

Measurements of the CoM trajectory and its velocities are

considered as available, thereby

y =
[

xCoM yCoM ẋCoM ẏCoM

]T
(6)

The process function matrix Fi−1 depends on the pa-

rameter vector λ =
[

m l0 α0 g kleg

]T
. Process and

measurement noises, w and v, are considered zero-mean

white noise with covariance matrices Q and R, respectively.

It is important to mention that the system dynamics

change according to the current phase (double or single

support), which means that the process function definition

is conditioned to the detection of the events that delimit the

beginning or the end of an specific phase. The superscript θ

in the F matrix denotes this hybrid behavior, where θ can

takes values of 1 or 2, depending if the current phase of the

system is double or single support, respectively.

The conditions that lead the system to a transition depend

on the contact of the leg with the ground. Since the foot

point positions rFP are also known, this information is used

for establishing the transitions between phases.

II. SIMULATION RESULTS

In order to verify the feasibility of this proposal some

simulations were performed. The SLIP dynamics were solved

to generate data sets that later will be used as measurement

information for the EKF. Three walking solutions with three

different values of kleg were generated. The system equations

were solved using the Runge-Kutta integration method with

a step size of 0.1ms.

The stiffness values, as well as the other system parame-

ters, were chosen in order to have periodic stable solutions,

based on the results obtained by [5]. For all three proposed

scenarios the body mass was 80kg and the leg’s rest length

was adjusted to L0 = 1m. The chosen kleg values correspond

to k1 = 11.8kN/m, k2 = 15.7kN/m, k3 = 23.5kN/m.

Concerning the EKF implementation, the initial estimate

of kleg was intentionally set at a high value, kleg = 2.8kN/m,

in all the three scenarios. The rest of the states’ initial values

was taken from the corresponding data sets.

Figure 2(a) shows the vertical position of CoM as a result

from the EKF implementation. In Figure 2(b) one-period

solution for the three simulations are presented. As expected,

as kleg goes higher, the vertical oscillations of the CoM are

smaller. This is a normal situation in human walking, namely,

the subject switches to a higher velocity wich it reflects into

stiffer legs.

The results of the stiffness estimation for the three walking

solutions can be seen in Figure 2(c). For the three cases,

the kleg estimation steady-state solutions converge to a value

very close to the corresponding true stiffness. The estimation

error evolution is shown in Figure 2(d). The RMS errors

for each estimation are e1 = 0.47kN/m, e2 = 0.06kN/m and

e3 = 1.157kN/m.

From this preliminary results, it can be concluded that

the EKF-based approach can generate a reliable stiffness

estimation using the SLIP walking model, with no more a

priori information than the CoM trajectory and its velocities.

Moreover, the hybrid nature of the SLIP model is well

represented in the EKF formulation, which can be observed

in the vertical CoM position for all the three proposed

scenarios. The conditions of transition based on the feet

points switched the system properly to the next phase. In

terms of implementation this means that the process function

changes to the corresponding model in a precise way.

III. CONCLUSIONS

This paper presented an alternative stiffness estimation

technique using an extended kalman filter based on the

SLIP walking model. The simulation results showed good

agreement between the true kleg values and its estimation at

three different scenarios of low, medium and high stiffness.

An interesting characteristic of this proposal is the simul-

taneous state estimation and parameter identification of the
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Fig. 2. Simulations Results - (a) Vertical CoM position obtained from one of the three walking solutions using the EKF. (b) A single step extracted for
each solution. It can be observed the differences between vertical excurtions of the CoM for the three values of kleg. (c) The kleg estimation for the three
walking solutions. (d) The corresponding estimation error. Black curve corresponds k1, while the blue and the red ones belongs to k2 and k3, respectively.

system model, using only CoM kinematics information. This

contrasts with other techniques that rely on the GRFs to

obtain an approximate value of kleg.

Even though the SLIP model is an ideliazed represen-

tation of legged locomotion, this approach may also be

implemented using experimental data collected from humans.

Future work is oriented to add more realisitic features to

this model in order to implement the EKF-based approach

in a real leg stiffness identification problem for rehabilitation

applications.
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