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Abstract— An intelligent recovery classification and 

monitoring system (IRCMS) for post Anterior Cruciate 

Ligament (ACL) reconstruction has been developed in this 

study. This system provides an objective assessment and 

monitoring of the rehabilitation progress by integrating 3-D 

kinematics and neuromuscular signals recorded through 

wearable motion and electromyography sensors, respectively. 

The data from a group of healthy and ACL reconstructed 

subjects were collected for normal/brisk walking (4-6km/h) and 

single leg balance (eyes open and eyes closed) testing activities. 

Fuzzy clustering and fuzzy nearest neighbor methods have been 

used to classify the collected data into different groups for each 

activity. The classification accuracy of the system is found to be 

94.49% for 4 km/h walking speed, 95.41% for 5 km/h walking 

speed, 96.00% for 6 km/h walking speed, 94.44% for single leg 

balance testing with eyes open and 95.83% for single leg 

balance testing with eyes closed. The recovery status of a 

subject is evaluated based on different activities assessed and 

the overall assessment is done using Choquet integral fusion 

technique. Further, biofeedback mechanism has been developed 

using a visual monitoring system which provides the variations 

in strength/activation of knee flexors/extensors and 3-D joint 

kinematics. This integrated system can be used as an assistive 

tool by sports trainers, coaches and clinicians for monitoring 

overall progress of athletes' rehabilitation and classifying their 

recovery stage for multiple activities. 

I. INTRODUCTION 

Anterior cruciate ligament (ACL) injuries are common in 
sports, like soccer, basketball and tennis, which require 
pivotal movements and frequent maneuvering of lower limb 
joints [1]. ACL injury generally results in changes in 
spatiotemporal, kinematics, neuromuscular and kinetics 
parameters of the subjects during motion. These changes not 
only restrain an athlete to rejoin sports temporarily or 
permanently but they also may lead to cartilage degeneration 
and osteoarthritis over the period of time [2]. Three-
dimensional kinematics changes in knee can still persist even 
after one year of ACL reconstruction (ACL-R) followed by 
rehabilitation [3]. Additionally, the muscle strength 
decreases after ACL surgery and regaining the muscle 
strength plays an important role in dynamic knee joint 
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stability [4]. In more demanding activities, like one leg 
jumping, deficits in the dynamic postural-control after 
landing has also been observed in female athletes after more 
than two years of ACL reconstruction [5].  In order to avoid 
late discovery of such alterations and minimizing the risk of 
re-injury, a timely action can be taken during the 
recuperation regimen if a robust rehabilitation monitoring 
system is available.  

Subjective or partially objective measures are used to 
assess the recovery progress of subjects undergoing activity 
based ACL rehabilitation protocols. These measures, in 
general, do not provide the insight of recovery issues e.g. 
recruitment of different muscles in each phase of an activity, 
co-contraction of muscles and their effects on corresponding 
knee joint movements etc. Timely intervention during 
rehabilitation phases can be done if the recovery status is 
properly quantified and a biofeedback is provided. This 
paper describes an intelligent recovery classification and 
monitoring system (IRCMS) to provide an objective 
assessment and monitoring for the recovery status after ACL 
reconstruction by integrating 3-D kinematics and 
neuromuscular features. Data are recorded non-invasively 
through wearable wireless 3-D motion and electromyography 
sensors and a fuzzy logic based system has been used to 
classify the recovery level of each activity. Normal/brisk 
walking and balance testing activities during rehabilitation 
protocol are included to test the proposed approach. The 
overall recovery classification is computed by using Choquet 
fuzzy integral fusion [6]. A visualization system for 
monitoring the synchronized bio-signals has also been 
developed to evaluate the subjects at individual level and 
identify the specific muscle performance or knee movements 
during each activity. The system can be utilized as an 
assistive tool by sports trainers, coaches and clinicians for 
monitoring overall progress of athletes' rehabilitation and 
classifying their recovery for multiple activities. 

II. METHODOLOGY 

The ACL recovery classification model based on 

multiple activities along with the placement of sensors on 

human lower extremities is depicted in Fig. 1. The overall 

recovery classification is a four step process as explained 

below. 

A. Data Acquisition 

In order to test the proposed system, four activities were 

selected from the rehabilitation protocol followed by the 

athletes:  walking   on treadmill (4 km/h and 5 km/h),    brisk 
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Figure 1.  Multi-Activity based overall ACL recovery calssification model and sensor placement on human lower extremities (front view) 

walking on treadmill (6km/h), and single leg flat surface 
balance testing with eyes open and eyes closed. The 3-D 
kinematics and neuromuscular data were recorded for 
subjects from both lower limbs (healthy and ACL 
reconstructed) for two sessions of 30-35sec for each walking 
speed and two sessions of 15-20sec for each balance test. 
The KinetiSense (ClevMed, Inc.) 3-D motion sensors and 
BioCapture (ClevMed, Inc.) monitoring system were used to 
record the kinematics and electromyography signals for these 
activities, respectively. The data from sensors were 
wirelessly transferred through USB receiver to the computer 
at a sampling rate of 128Hz where the KinetiSense software 
recorded the readings for each experiment. Each subject was 
setup with four motion sensors attached to his/her both 
left/right thighs and shanks to note the 3-D angular rates and 
accelerations of lower limb extremities during all four 
activities (Fig. 1). The neuromuscular signals were recorded 
using surface EMG sensors from vastus medialis, vastus 
lateralis, semitendinosus and biceps femoris muscles for 
walking activities and wirelessly transferred to the 
BioCapture software. For balance testing activity, data from 
gastrocnemius medialis were also recorded in addition to the 
above four muscles. The BioCapture records the data at a 
sampling rate of 960Hz (12/16 bits A/D) so re-sampling was 
done in order to synchronize both kinematics and EMG 
signals. All further processing was done by using MATLAB 
7.1 software. 

B. Feature Extraction 

Two types of feature sets were generated for all activities 
based on kinematics and EMG signals recorded.  

1) Kinematics Feature Set: The kinematics feature set 

included 3-D joint movements of the knee namely knee 

flexion/extension, abduction/adduction and internal/external 

rotation. These parameters were computed by using angular 

rates and accelerations recorded from motion sensors. Each 

gait cycle for walking activities was segmented by detecting 

the heel strike and root mean square (RMS) value for above 

three parameters were calculated for each phase of a gait 

cycle. A feature vector for kinematics data was then 

generated for selected phases of the gait namely Load 

Response (LR), Mid Stance (MSt), and Terminal Swing 

(TSw) phases. The selection of these phases was due to the 

fact the selected quadriceps and hamstrings muscles  are 

mostly active during these phases [7]. The MSt was further 

divided in to two halves as MSt_1 and MSt_2 to reduce the 

segment length and make the distinction among muscles 

more clear. For balance testing activities, a time based 

segmentation was done. The total time for each balance 

testing activity was divided into segments of 4 seconds and 

the RMS value for three parameters were calculated for three 

segments (out of 4 or 5  segments). 

2) EMG Feature Set: The raw EMG signals were 

transformed to generate time, frequency and time-frequency 

parameters of relevant muscles during all four activities. The 

features investigated in this study are integrated EMG 

(IEMG), mean absolute value (MAV), root mean square 

(RMS), wave length (WL), mean frequency (MNF) and 

maximum/minimum continuous wavelet transform (CWT) 

coefficients . These parameters have been found effective in 

classification using EMG signals previously [8]. The values 

for these parameters were computed corresponding to the 

gait phases (for walking activities) or fixed time duration (for 

balance activities).   

C. Feature Projection 

The feature vector length for walking activities for single 
gait cycle for one leg was 124 (7 EMG features × 4 muscles 
× 4 phases + 3 kinematics feature × 4 phases ). For balance 
activities, the feature vector length was 38 (7 EMG features 
× 5 muscles + 3 kinematics feature) for each segment for 
each leg. In order to reduce the feature vector length, 
Principal Component Analysis (PCA) was applied which 
projects the high dimensionality of data to the low 

Step 4Step 3Step 2

S
el

ec
t 

A
ct

iv
it

y

Activity 

Based Data 

Segmentation

Feature 

Selection/

Projection

Walking 

Recovery 

Classification

Data Acquisition for 

Normal Walking

Activity 

Based Data 

Segmentation

Feature 

Selection/

Projection

Brisk Walking 

Recovery 

Classification

Data Acquisition for 

Brisk Walking

Activity 

Based Data 

Segmentation

Feature 

Selection/

Projection

Balance (EO) 

Recovery 

Classification

Data Acquisition 

Single Leg Balance 

Test (Eyes Open)

Activity 

Based Data 

Segmentation

Feature 

Selection/

Projection

Balance (EC) 

Recovery 

Classification

Data Acquisition for 

Single Leg Balance 

Test (Eyes Closed)

Decision Fusion 

(Choquet Integral)

Output Class

gλ fuzzy 

measure

Step 1
 

Z Z

Y
X

X

Y

ωz ωz

Z

X

Y

ωz

Z

Y
X

ωz

Y

X

Right Left

Bio-Capture

Motion Sensors

Motion Sensors

EMG Electrodes
EMG Electrodes

 

7222



  

dimensionality. PCA transforms the original feature set of 

variables NRFf  into a new feature set of variables 

MRVv  , known as Principle Components (PCs), of 

reduced dimension by minimizing the mean-square error 
(MSE) between the original set F and projected set V [9].   

D. Activity Based Recovery Classification (RCA) 

The classification of each subject's data for four different 
activities (Fig. 1) is done by using fuzzy clustering technique 
[10]. Fuzzy clustering partitions the sample space and 
organizes the data into approximate clusters. In domains like 
recovery classification or gait analysis where variations in 
data are more common and one object may belong to 
different groups with different degree of memberships, fuzzy 
clustering is quite suitable [11]. The fuzzy C-means (FCM) 
has been applied to the transformed feature set 'V' of 
kinematics and neuromuscular data collected during walking 
at different speeds on the treadmill and balance testing 
activities. Based on the available data, four clusters were 
generated for each activity. The assignment of data points to 
each cluster was based on their similarity to each other rather 
than time since ACL reconstruction.  Once the clusters are 
generated for a specific activity, the cluster for healthy 
subjects is identified with cluster center 'CH' and the distance 
of 'CH' from other clusters' centers has been used as a metric 
to identify the recovery stage of the subjects. The recovery 
status of data in a cluster is classified as close to healthy or 
away from healthy based on their distance from 'CH'. In order 
to validate the classification, Leave-One-Out (LOO) cross 
validation technique was used in conjunction with fuzzy 
nearest neighbor (f-knn) method [12]. Due to intra-subject 
variability, data points belonging to the same subject for an 
activity may fall into multiple clusters with higher 
membership values. This results in classifying a subject in 
two or more groups at the same time based on his/her feature 
vectors' variations. This problem has been resolved by taking 
the average of membership grades for each class for an 
activity to which a subjects' data belong and then the class 
with the highest membership value is chosen as the output 
class for the subject for that particular activity. By using this 
technique, overall membership values are assigned to the 
subjects for each class for all activities. 

E. Overall Recovery Classification 

Different classifiers may assign different classes to the 
same subject base on his/her performance during each 
activity or due to misclassification. In addition to evaluate 
the output of an individual activity of a subject, an overall 
assessment can also be helpful to categorize the recovery 
stage of a subject after a certain rehabilitation period. The 
classification results of multiple activities for each subject's 
data have been combined using Choquet integral method. 
The Choquet integral is a non-linear functional defined with 
respect to a fuzzy measure gλ, where gλ is completely 
determined by its densities (g

i
 - degree of importance of 

classifier yi towards final decision). The fusion of different 
classifiers is computed based on (1) and (2) [6] 
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where pi (classification rate) and β (scaling factor for 
classifiers) are in interval [0,1], and h(y0)=0 and h(y1) ≤ h(y2) 
≤ ... ≤ h(yn). The value of i=3 is chosen based on the higher 
accuracy rate of the third classifier. 

F.  Visualization of Bio-Signals 

In order to provide a biofeedback, a visualization system 
for monitoring the neuromuscular and kinematics bio-signals 
has been developed. The differences of recuperation among 
individual subjects can be examined by observing the 
activation of different muscles and knee joint movements 
simultaneously for ACL intact and ACL-R legs, during 
walking and balance testing activities. Moreover, 
overlapping of neuromuscular and kinematics signals can 
depict the contribution of muscles in controlling the 3-D 
joint movements and thus a more targeted recovery process 
can be initiated.  

G. Participants 

Four healthy (3 males and 1 female) and eight unilateral 
ACL reconstructed (6 males and 2 females) subjects were 
recruited for the purpose of study from Sports Center and 
Ministry of Defense in Brunei Darussalam. The healthy 
subjects were having a mean age of 31.00± 8.29 years, mean 
height 164.50±13.03 cm, and mean weight 65.25±20.17 kg. 
The ACL reconstructed subjects were at different stages of 
rehabilitation (from 3 months to more than a year after ACL 
reconstruction) with mean age: 31.00± 4.07 years, mean 
height 167.75±7.85 cm, and mean weight 70.50±15.44 kg. 
An informed written consent was taken from all of the 
participants. The study was carried out as per the guidelines 
approved by UBD Graduate Research Office and Ethics 
Committee.  

III. RESULTS AND DISCUSSION 

Before applying clustering technique, the multivariate 
analysis of variance (MANOVA) was employed to evaluate 
the difference of the entire set of means for multiple features 
between healthy and ACL-R groups. The p-value depicts the 
significant difference between two groups for four selected 
activities (p << 0.05). In order to reduce the large feature set 
and selecting the most significant features, PCA was 
successfully applied. More than 98% variation is explained 
by selecting first 40 PCs for walking activity and 10 PCs for 
balance testing activity. The transformed features were 
clustered for each activity using FCM to form the groups of 
subjects who were healthy or at similar stage of recovery to 

compute ARC . Four clusters were identified as "Healthy", 

"ACL-R > 1 year", "ACL-R < 1 year" and "ACL-R <= 6 
months" represented as "Group A", "Group B", "Group C" 
and "Group D", respectively. Fig. 2 shows the clusters 
identified by FCM for walking (4km/h) activity for different 
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groups (data are plotted for only first two PCs). Some of the 
data points lie on the boundary of groups A, B and C clusters 
which depicts that some of the subjects' data belong to 
different clusters with certain high grades and cannot be 
completely categorized into a single recovered group. This is 
natural as even after following the same rehabilitation 
protocol, the recovery may depend on individuals' other 
physical parameters. Another possible reason for this 
overlapping is the intra-subject variability which can cause 
falling some of the data of the same subject into neighboring 
cluster. Fig. 3 shows the clusters formed for brisk walking 
(6km/h) activity. It was found that clusters became more 
distinct for high speeds and the overlapping between clusters 
reduced as we moved from lower to higher speeds. The 
clusters identified during balance testing were found to be 
more distinguishable for both eyes open and eyes closed tests 
for all groups. 

 

Figure 2.  Clusters' centers identified by FCM (4km/h Speed) - Healthy 

(+), ACL-R > 1year (▲), ACL-R < 1 year (■), ACL-R <= 6 months (♦)  

The performance evaluation of the cluster-based 
classification was done by using LOO cross validation 
technique. The f-knn was trained on N-1 samples from the 
dataset for each activity and one sample was left as the 
validation sample (N= total number of samples in an 
activity). The input parameters of the testing sample were 
first transformed using the coefficient matrix of PCA and 
then f-knn was used to classify the subject based on trained 
clustered data. This process was repeated N times for each 
activity and the classification accuracy was found to be 
94.49% for 4 km/h walking speed, 95.41% for 5 km/h 
walking speed, 96.00% for 6 km/h walking speed, 94.44% 
for single leg balance testing with eyes open and 95.83% for 
single leg balance testing with eyes closed. The classification 
precision values for four groups (A, B, C and D) for walking 
at 4km/h speed were 98.04%, 89.74%, 92.31% and 91.30% 
respectively. For walking at 5km/h, the classification 
precision values for groups A through group D were found to 
be 93.62%, 100.00%, 91.30% and 100.00%. For walking at 
6km/h, the classification precision values for groups A 
through group D were found to be 97.50%, 90.48%, 95.00% 
and 100.00%.  For single leg balance testing with eyes open, 
the classification precision values for groups A through 
group D were found to be 91.67%, 100.00%, 85.71% and 

100.00%. For single leg balance testing with eyes closed, the 
classification precision values for groups A through group D 
were found to be 100.00%, 100.00%, 88.89% and 100.00%. 

 

Figure 3.  Clusters' centers identified by FCM (6km/h Speed) - Healthy 

(+), ACL-R > 1year (▲), ACL-R < 1 year (■), ACL-R <= 6 months (♦) 

 

Figure 4.  Clusters' centers identified by FCM (single leg balance test with 

eyes open) - Healthy (+), ACL-R > 1year (▲), ACL-R < 1 year (■), ACL-R 

<= 6 months (♦)  

In order to obtain an overall recovery value, the Choquet 

integral was used. The fuzzy densities of each classifier were 

computed as g
1
=0.373, g

2
=0.384, g

3
=0.576, g

4
=0.377, 

g
5
=0.383 by using (1) with β=0.6. The value of λ was found 

to be -0.914. Table I reports the results of combining 

classifiers for different activities for four subjects using (2). 

Based on the final output it can be noted that some of the 

activities were misclassified by classifiers but the fusion 

results match with the actual classes. The values in the 

parenthesis show the membership grade or confidence of the 

evaluation from FCM. The results of the fusion were 

manually verified. The comparison of different bio-signals 

for an individual subject is shown in Fig. 5. The differences 

between knee rotation of both legs is more visible for this 

subject even after more than 6  months of surgery.    
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TABLE I.  RESULTS OF COMBINING MULTIPLE CLASSIFIERS BY CHOQUET INTEGRAL

Test 

Data 

Actual 

Class 

Activity Classification - Partial Decision Fusion 

Output 4 km/h 5 km/h 6 km/h Eyes Open Eyes Closed 

a A C (0.3478) A (0.3124) A (0.6675) B (0.7047) C (0.4382) A 

b B D (0.6485) B (0.6359) B (0.6347) C (0.7839) C (0.4214) B 

c B A (0.5737) B (0.4891) A (0.6433) B (0.6977) B (0.6007) B 

d C B (0.5422) B (0.4891) C (0.8923) C (0.752) D (0.7385) C 

 

 

Figure 5.  Comparison of ACL intact (___) vs.ACL  reconstructed (-.-.-) 

leg  during single lege eyes open balance test for a subject from Group C 

for  knee angle (a), knee roation (b), vastus lateralis (c) bicep femoris(d)  

Similarly, difference in muscle strength can also be noted for 

both legs. Observing variations in these parameters can be 

useful for physiotherapist or clinicians in identifying the 

deficiency of  specific muscles or detecting any abnormality 

in the joint movements. Additionally, simultaneous 

monitoring of superimposed kinematics and neuromuscular 

data for multiple activities can provide correlation of both 

signals and thus any anomalous patterns can be detected. 

IV. CONCLUSIONS AND FUTURE WORK 

The integration of 3-D kinematics and neuromuscular 

signals proved effective in classifying the recovery of 

subjects after ACL reconstruction. This classification will be 

beneficial in timely identification of athletes with delayed or 

partial recovery, requiring early intervention to accelerate or 

modify rehabilitation program besides minimizing later stage 

problems such as re-injury or knee osteoarthritis. It can also 

be used to evaluate athletes' performance before their re-

embarking to sports activities. In addition, more refined 

assessments can be done by recognizing varying patterns of 

different parameters using simultaneous visualization of 

multiple bio-signals. In order to further validate the system, 

data are being collected from more athletes with ACL 

reconstruction. Moreover, a comprehensive analysis of the 

subjects can be obtained by including more activities (e.g. 

single leg jumping/hoping and running) and taking into 

consideration other parameters (e.g. gender, age, type of 

sports). 

ACKNOWLEDGMENT 

The authors appreciate Ministry of Sports and Ministry of 

Defense, Brunei Darussalam for providing national athletes 

as test subjects for this study.  

REFERENCES 

[1] J. Agel, E. A. Arendt, and B. Bershadsky, "Anterior cruciate ligament 

injury in national collegiate athletic association basketball and 

soccer," The American Journal of Sports Medicine, vol. 33, pp. 524-

531, 2005. 

[2] L. S. Lohmander, A. Ostenberg, M. Englund, and H. Roos, "High 

prevalence of knee osteoarthritis, pain, and functional limitations in 

female soccer players twelve years after anterior cruciate ligament 

injury," Arthritis Rheum, vol. 50, pp. 3145-52, 2004. 

[3] B. Gao and N. N. Zheng, "Alterations in three-dimensional joint 

kinematics of anterior cruciate ligament-deficient and -reconstructed 

knees during walking," Clinical Biomechanics, vol. 25, pp. 222-229, 

2010. 

[4] T. Liu-Ambrose, J. E. Taunton, D. MacIntyre, P. McConkey, and K. 

M. Khan, "The effects of proprioceptive or strength training on the 

neuromuscular function of the acl reconstructed knee: A randomized 

clinical trial," Scand J Med Sci Sports, vol. 13, pp. 115-23, 2003. 

[5] K. A. Webster and P. A. Gribble, "Time to stabilization of anterior 

cruciate ligament-reconstructed versus healthy knees in national 

collegiate athletic association division i female athletes," J Athl Train, 

vol. 45, pp. 580-5, 2010. 

[6] T. Murofushi and M. Sugeno, "An interpretation of fuzzy measures 

and the choquet integral as an integral with respect to a fuzzy 

measure," Fuzzy Sets and Systems, vol. 29, pp. 201-227, 1989. 

[7] J. Perry, Gait analysis: Normal and pathological function: Delmar 

Learning, 1992. 

[8] S. M. N. A. Senanayake, O. A. Malik, P. M. Iskandar, and D. Zaheer, 

"A hybrid intelligent system for recovery and performance evaluation 

after anterior cruciate ligament injury," presented at 12th International 

Conference on Intelligent Systems Design and Applications (ISDA), 

2012. 

[9] I. T. Jolliffe, Principal component analysis, 2 ed. New York: Springer-

Verlag New York, Inc., 2002. 

[10] J. C. Bezdek, Pattern recognition with fuzzy objective function 

algorithms: Kluwer Academic Publishers, 1981. 

[11] M. J. O'Malley, M. F. Abel, D. L. Damiano, and C. L. Vaughan, 

"Fuzzy clustering of children with cerebral palsy based on temporal-

distance gait parameters," IEEE Trans Rehabil Eng, vol. 5, pp. 300-9, 

1997. 

[12] J. M. Keller, M. R. Gray, and J. A. G. Jr, "A fuzzy k-nearest neighbor 

algorithm," IEEE Transactions on Systems, Man, and Cybernetics, 

vol. 15, 1985. 

7225


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

