
  

 

Abstract— In our previous research we developed a 

SmartShoe – a shoe based physical activity monitor that can 

reliably differentiate between major postures and activities, 

accurately estimate energy expenditure of individuals, measure 

temporal gait parameters, and estimate body weights. In this 

paper we present the development of the next stage of the 

SmartShoe evolution – SmartStep, a physical activity monitor 

that is fully integrated into an insole, maximizing convenience 

and social acceptance of the monitor. Encapsulating the 

sensors, Bluetooth Low Energy wireless interface and the 

energy source within an assembly repeatedly loaded with high 

forces created during ambulation presented new design 

challenges. In this preliminary study we tested the ability of the 

SmartStep to measure the pressure differences between static 

weight-bearing and non-weight-bearing activities (such as no 

load vs. sitting vs. standing) as well as capture pressure 

variations during walking. We also measured long-term 

stability of the sensors and insole assembly under cyclic loading 

in a mechanical testing system.  

 

I. INTRODUCTION 

Physical Activity (PA) and Energy Expenditure (EE) 
monitoring is used in many research and clinical 
applications.  

One application that heavily relies on monitoring of PA 
and EE of individuals in their community (free-living) 
environment is the study of obesity. Obesity, or excessive 
body fat, have been linked with low levels of physical 
activity and sedentary lifestyles [1]. Study of sedentary 
behavior and physiology of inactivity [2] demands physical 
activity monitors that not only are capable of quantifying the 
gross amount of PA and EE, but also accurately differentiate 
and quantify sedentary behaviors, that remains a challenge 
for many common types of PA monitors.  

Monitoring of PA also has extensive applications in post-
stroke rehabilitation. Individuals after a stroke are typically 
much less active than healthy individuals [3]. One of the 
significant challenges for many stroke survivors is regaining 
ability to walk and increasing the levels of physical activity 
and community participation. Failure to  improve PA levels 
leads to further deconditioning, which in turn plays a role in 
the development of secondary complications and an 
increased dependence in activities of daily living [4]. Thus, 
the effectiveness of the post-stroke rehabilitation may be 
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gauged by continuous monitoring of PA.  

Historically, single accelerometer based PA and EE 
monitors have been popularly used as monitoring tools [5], 
[6]. Since the accelerometry is fundamentally based on 
measurement of motion, it is not very accurate in recognition 
of sedentary postures (e.g. sitting) or differentiation of 
weight-bearing and non-weight bearing activities (e.g. 
cycling vs. walking). Such monitors typically are not very 
accurate in estimation of EE and fail to explain a 
considerable portion of energy expenditure variability in 
daily living tasks.  

A commonly utilized approach to improve accuracy of 
PA and EE measurement is to use multiple sensors, typically 
distributed on the body of the user. As an example, 6 body 
locations (ankle, hip, thigh, upper arm and wrist) were used 
in [7], while  [8] utilized 9 sensor locations. While the 
accuracy of PA recognition is improved by such multi-
sensor systems, they present a high burden to users and have 
limited practical applicability restricted to research studies. 

The wear burden is reduced in PA monitors that combine 
sensors in a single location. For example, the PA monitor 
described in [9] included 8 different sensors: accelerometer, 
audio, light, high-frequency light, barometric pressure, 
humidity, temperature, and compass. However, most multi-
sensor, single location monitors experience challenges in 
recognizing and quantifying sedentary behaviors and 
differentiation of weight-bearing and non-weight-bearing 
activities.  

Our proposed solution to the challenge of accurate PA 
monitoring from a single, unobtrusive location on the body 
has been a development of a shoe-based physical activity 
monitor (SmartShoe) that combines pressure transducers and 
an accelerometer for reliable recognition of postures and 
activities. Shoe sensors have been previously used to 
characterize gait of individuals  [10], [11] but with a few 
exceptions [12]-[13] have not been extensively used in PA 
and EE monitoring. The past studies conducted on 
SmartShoe platform demonstrated accurate (98%) 
classification of the six major postures and activities [14], 
including reliable recognition of sedentary postures and 
differentiation between weight-bearing and non-weight- 
bearing activities. SmartShoe monitor was equally effective 
in monitoring of PA in individuals recovering after a stroke 
[15], [16] achieving 95% accuracy in classifying sitting, 
standing, and walking activities. Use of activity-branched 
prediction models in EE estimation by SmartShoe allowed to 
achieve high accuracy of measuring energy expenditure 
[17]. SmartShoe has also been used to accurately capture 
temporal gait parameters of healthy and post-stroke 
individuals [18] and estimate the body weights of SmartShoe 
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users [19]. 

These results demonstrated feasibility, reproducibility, 
and validity of PA and EE monitoring with the SmartShoe. 
However, a typical limitation of the various generations of 
the SmartShoe monitors was the need  to either modify the 
shoe or attach a small clip-on to the shoe to accommodate 
the sensors and wireless electronics. In this paper we present 
a development of the next stage of the SmartShoe evolution 
– SmartStep, a physical activity monitor that is fully 
integrated into an insole, maximizing convenience, 
applicability, and social acceptance of the monitor.  

 

II. SENSOR SYSTEM 

A. Wearable sensor system 

The SmartShoe [20] utilizes a flexible insole inserted 
with pressure sensors and a small enclosure with an 
accelerometer, a processor and a Bluetooth link to a smart 
phone. Transitioning from original SmartShoe to an insole-
based monitor presents several challenges. First, the size of 
the electronics needs to be dramatically decreased, so that 
the electronic board can be integrated into the space 
available under the arch of the foot. Second, the power 
consumption of the electronics has to be significantly 
reduced to decrease the capacity and size of the battery 
needed to power the electronics. Third, the sensors, 
electronics and the battery need to be integrated into an 
assembly that is repeatedly loaded with high forces during 
ambulation. 

A prototype of the SmartStep monitor attempting to 
address these challenges is shown in Figure 1. The whole 
assembly is based on flexible FR4 printed circuit board. 
Three pressure sensors (12.5mm FSR402, Interlink 
Electronics) are located under biomechanically important 
support points: the heel, the 1

st
 metatarsal head, and the big 

toe. The electronic assembly integrating a 3D accelerometer, 
flash memory and a Bluetooth Low Energy micro assembly 
is encapsulated in epoxy resin under the arch of the foot, 
where forces developed during ambulation are minimal. The 
whole assembly is encapsulated in urethane rubber for 
cushioning and protection. The insole weighs 71 g in total. 

The block-diagram of the SmartStep monitor is shown in  
Figure 2. There are three major components in the system: 
the insole hardware, the insole software containing a custom 
profile of Bluetooth Low Energy, and the phone software 
permitting data collection from the SmartStep. The following 
is a detailed description of each component. 

B. Electronic Hardware 

The 0.8 mm thick, 4 layer PCB is 24 mm x 19 mm in 
size. The fully assembled board together with the battery 
weighs 4g. The embedded system hardware is comprised of 
BR-LE4.0-S2A Bluetooth Low Energy (BTLE) module, a 
three-dimensional accelerometer (ADXL 346), power 
management circuitry, pressure sensor interface, 
AT25DF641 flash and ML2020 45 mAh rechargeable 
Lithium battery.  

BTLE is used for transferring small, infrequent packets 
of data and achieving the lowest possible power 

consumption. Smart step is based on Blueradios BR-LE4.0-
S2A BTLE module, which utilizes Texas Instrument’s 
CC2540 System-On-Chip, and has a foot print of 11.8 mm x 
17.6 mm.  In BTLE, the data transmission happens in 
‘connection events’ lasting for  ~2.8 ms or longer with the 
peak current consumption on the order of 30mA.The 
processor remains in the sleep mode a majority of the time, 
other than during sensor read events. The SmartStep insole 
monitor communicates with Motorola Razr smart phone 
(running Android 2.3.4) over BTLE and the smart phone 
logs the data. 

C. Firmware 

All the wireless communication is handled by the BTLE 
stack from Texas Instruments. The stack makes sure that the 
processing core enters appropriate sleep modes when the 
processor is not reading sensors or not transmitting data 
during connection events. Generic Attribute Profile (GATT) 
is used and extended to suit our needs. In GATT, the server 
(SmartStep) has defined services with 16 bit Universally 
Unique Identifiers (UUIDs). These services can contain 
multiple characteristics which can expose their attributes as 
readable/writable/notifiable to the client (phone or 
computer). Enabling notification on a characteristic is a way 
to get periodic data over BTLE which is essential for 
SmartStep to communicate with the client. The SmartStep 
notifies the client of a characteristic value. The client does 
not need to prompt the SmartStep for the data, nor need to 
send any response when a notification is received, but it 
must first configure the characteristic to enable notifications. 
The profile used defines when the SmartStep is supposed to 
send the data. The SmartStep has a ‘send data’ characteristic 
which is exposed as notifiable to the client.   

The firmware is also responsible for reading signals of 
the accelerometer and pressure sensors. The periodic event 

 
Figure 1.  SmartStep insole monitor (men’s size US 9). For illustration 

purposes the monitor is shown without the foam padding on top. 

 

Figure 2.  The block-diagram of the SmartStep. 
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timer provided by TI BTLE stack is used to generate ‘sensor 
read’ events every 40 ms and ‘set notification’ event every 
120 ms. Upon each sensor read event, three axes of 
accelerometer are read with 8 bit resolution through the SPI 
interface. Next, the pressure sensors are supplied with power 
and ADC measurements are taken with 8-bit resolution. 
Three consecutive measurements of accelerometer and 
pressure sensors were buffered in an 18 byte array. 
Connection interval of 250ms is used, so that 2 sets of 
notifications are sent together to save energy on establishing 
a wireless connection.   

D. Phone software 

An Android application for the Motorola RAZR is 
developed to log data transmitted by the SmartStep. At the 
time of the development of this work, BTLE is still not 
standardized by Android Community. We used the Motorola 
BTLE API’s to develop our Android application [22]. The 
phone application can connect to a BTLE server 
(SmartStep), determine the characteristics available from the 
server and read/write data to them, enable notification, 
collect periodic data, save them to a file in CSV format, and 
disconnect from the server.  

III. METHODS 

Three tests were performed on the SmartStep monitor: 

A. Power consumption test 

To measure real-life energy consumption of the 
SmartStep monitor and to estimate expected battery life of 
the wearable insole, a power consumption test was 
conducted. The power consumption by the SmartStep 
depends on the number of sensors being read at the same 
time and state of the BTLE stack. Average current 
consumption for the connection events and during sensor 
read events were calculated from the oscilloscope trace, 
which had the voltage waveforms across a 10 Ω resistor in 
series with the battery. 

B. Static and dynamic human subject tests 

To demonstrate ability of the pressure sensors in the 
SmarStep register variations in pressure levels during static  
(not wearing the shoes, sitting, standing) and dynamic 
(walking) activities, a single healthy individual with the shoe 
size equal to the size of the manufactured SmartStep insole 
(US M9) wore the monitor while performing  transitions 
from no load, to sitting, to standing,  to walking and in the 
reverse sequence back to no loading. The sensor signals 
were wirelessly captured and analyzed for relative changes 
in comparison to no load condition. 

C. Cyclic loading test  

The cyclic loading test assessed durability of the 
SmartStep assembly under cyclic loading conditions typical 
of normal gait. MTS 810 uniaxial servo hydraulic test frame 
with Flextest SE controller was used to perform the cyclic 
loading test over the full area of the insole monitor (Figure 
3).  The insole was tested with a 2 Hz sine wave loading 
profile. The amplitude was 350 N and a mean load –325 N, 
which results in a R-ratio (Pmin/Pmax) of 0.3, while Pmax = 
-500 N and Pmin = -150 N. The test ran for 36 hours with a 
total of 262,900 cycles. The sensor readings were captured 

over BTLE and the percentage changes in readings over time 
were calculated to understand the drift in sensor readings. 

  
Figure 3. SmartStep under machine test and representative loading 

profile for cyclic loading test with 2Hz sine wave profile 

IV. RESULTS 

A. Power consumption test 

Figure 4 shows the scope trace during the wireless 
connection events (occurring at 4 Hz rate) and during sensor 
reads (25 Hz). The average current consumed during 4.2ms 
long connection events is calculated to be 12.71 mA and for 
1.6ms long pressure sensor read events it is 10 mA. The 
average current consumption during the device is in 
connected state (for 1 s) is 0.61 mA (CC2540 sleep current 
is 1 uA) translating into the expected battery life of 73.3 Hrs.  

 

Figure 4. Oscilloscope traces of connection events (left)  
and sensor reads (right). 

B. Static and dynamic human subject tests 

Figure 5 shows sensor signal traces for the activity 
transitions captured by the heel sensor, demonstrating 
observable response to each posture and activity. Table I 
shows the relative percentage change in sensor reading for 
the different loading conditions.  

 

Figure 5. Activities of not wearing the shoes, sitting, standing, walking 
monitored with heel sensor (top graph). 

TABLE I. RELATIVE CHANGE IN SENSOR READING 

 Sitting to No 
Load, % 

Standing to No 
Load, % 

Walking to 
No Load, %  

Heel Sensor  17 48 56 

Toe Sensor 8 40 60 

C. Cyclic loading test  

Figure 6 demonstrates the signal waveforms obtained 
from the pressure sensor in the metatarsal head position. 

7211



  

After 5 hours of the test there was a 6% drift and after 36 
hours there was 13% drift in sensor readings to that of initial 
test respectively. 

  

Figure 6. FSR signal after 0, 5 and 36 hours of loading. 

V. DISCUSSIONS 

This paper described the development and initial tests of 
the SmartStep – an insole based physical activity monitor 
with Bluetooth Low Energy. The power tests demonstrate 
power consumption two orders of magnitude lower than that 
of regular Bluetooth (0.61 mA vs. 40 mA @2.5 V) in the 
original SmartShoe monitor. Such low power consumption 
enables miniaturization of the electronics within the insole, 
while enabling continuous operation for multiple days on a 
single charge. With expected wear of approximately 12hrs 
per day, the expected battery life is more than 6 days of 
continuous wearing between recharges.  

Static and dynamic tests on a human subject, 
demonstrated the abilities of the monitor to differentiate 
between no load, sitting, standing, and walking conditions. 
The observed difference in pressure levels is not only 
sufficient for the computer recognition of physical activity 
and the classification of weight-bearing and non-weight-
bearing activities but could also be used for the compliance 
checking (to determine whether the person is wearing the 
monitor) and automatic powering on/off of the device.  

Cyclic loading test on MTS demonstrate acceptable 
(13%) levels of pressure sensor drift over the time period 
equivalent to 23-46 days of continuous wearing (based on 
estimates of 5,000-10,000 steps per day). Finally, a practical 
data collection system has been created by logging the 
sensor data acquired by the SmartStep on an Android smart 
phone.  Future tests of SmartStep will focus on durability of 
the sensor assembly under realistic loads of everyday wear. 
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