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Abstract— A recent functional model of the left ventricle as a
pressure generator that is time and volume dependent [1] was
adapted to describe the mechanical aspects of heart muscle
contraction. Muscle’s complex dynamics develop from a single
equation based on the formation and relaxation of crossbridge
bonds. Muscle is modeled as a force generator that is time
and length dependent. This equation permits the calculation
of muscle elastance via Em = ∂fm/∂lm from muscle force
and length, both as functions of time. This muscle model is
defined independently from load properties, and elastance is
dynamic and reflects changing numbers of crossbridge bonds.
The model parameters were extracted from measured force
and length data from cat papillary muscle experiments in
the literature [2]. The purpose of this paper is to present
in some detail how to describe a particular muscle strip
from measured data. The resulting model is tested under a
wide range of mechanical conditions, such as isometric and
isotonic contractions for normal and varied inotropic state,
and muscle velocity is computed for different loads. Computed
results compare favorably with similar measurements from the
literature. The resulting lumped muscle model is a compact,
yet comprehensive functional description of muscle dynamics.

I. INTRODUCTION

MUSCLE is a dynamic tissue that embodies, at a
minimum, a direct relation between muscle length

and force, an indirect relation between load and velocity of
shortening, and large variation with contractile state. Creating
models of muscle that are equally dynamic is challenging.
Muscle dynamics are directly related to heart performance,
for example, the inverse relation between muscle force and
velocity of shortening is directly related to how high arte-
rial pressure (afterload) requires low velocity of ventricular
ejection, which leads to low cardiac output.

A recent study presented a new functional description
of the heart, proposing a single analytical function built
from parameters extracted from animal experiments [1]. This
compact model was found capable of describing the heart’s
response to changes in preload, afterload, and contractile
state. This same approach was adapted to describe cardiac
muscle strip [3].

Although the model has been presented in some detail [3],
this paper presents the method of application for description
of a particular muscle strip. Also shown is how instantaneous
muscle elastance may be computed from the model, and how
this elastance is dynamic under varied loading conditions.
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II. METHODS

Sonnenblick muscle experiments [2]. Papillary muscles
were isolated from the right ventricles of 0.5–1.5 kg cats.
Muscles ranged from 7–13 mm in length with cross-sectional
areas of 0.7–1.5 mm2. Muscles were bathed in buffered
Krebs-Ringer solution, and temperature was maintained at
21–25◦ C. Muscle tension (generated force) was measured
with a Statham GI-1-1000 tension transducer, and muscle
length was controlled by a custom electromechanical sys-
tem. Muscles were stimulated with a Grass S4C impulse
generator. Muscle tension and length were recorded on an
oscilloscope and a Sanborn oscillograph.

Muscle model. Muscle force fm is described as a function
of time t and muscle length lm according to [3]:

fm(t, lm) = a(lm − b)2 + (c lm − d)f(t) (1)

Generated force results from the sum of passive and active
components, shown on the left and right sides of the plus sign
in eq. 1, respectively. The passive term, to the left of the plus
sign, includes model parameters a and b, which are derived
from passive muscle force, as described below. a is a measure
of passive muscle elastance. b corresponds to muscle length
at zero force. Parameters a and b describe force resulting
from stretch of the passive, unstimulated muscle.

The active term, to the right of the plus sign, includes
model parameters c and d, which are derived from muscle’s
active force measurements. c, the length dependent compo-
nent, is directly related to the muscle’s contractile state, and
varies with changes in inotropy. The length independent term,
d, is constant for a particular muscle strip.

The function f(t) describes the time course of active force
generation, a product of contraction and relaxation exponen-
tials related to myofilament crossbridge bond formation and
detachment, respectively:
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τc and τr are time constants characterizing the contraction
(force increase) and relaxation (force decrease) processes,
respectively, while α is a measure of the overall rate of
these processes. The denominator normalizes f(t) between
the values 0–1. The combination of passive and active terms
yields an analytical function describing muscle force as a
function of both time and muscle length. tb is a time constant
derived from tp, τc, τr and α:
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TABLE I
MODEL PARAMETERS EXTRACTED FROM ONE MUSCLE STRIP.

Constant Value [units]
a 1.861 [mN/mm]
b 7.956 [mm]
c 19.2 [mN/mm]
d 158.1 [mN]
τc 0.19 [s]
tp 0.45 [s]
τr 0.3 [s]
α 2

and is close to the time to peak force, tp, in magnitude.
Muscle elastance, Em, defined as ∂fm/∂lm, was computed
as

Em(t, lm) = 2a(lm − b) + cf(t) (4)

III. RESULTS

Isometric muscle force measurements were obtained from
[2]. Passive and active isometric forces were measured from
these force vs. time plots for various values of fixed muscle
length. Figure 1 shows passive force fp measured on a
10 mm long muscle strip (lower curve) and the difference
between peak force (top curve) and fp, denoted active force
fa (middle curve). fp was fitted to the function a(lm − b)2

using MATLAB’s nonlinear regression algorithm, giving the
parameter values of a and b shown in Table I. fa was fitted
to the function c lm − d using MATLAB’s linear regression
algorithm, giving c and d.
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Fig. 1. Total force (top), active force fa (middle) and passive force fp

(bottom) measured at different initial muscle lengths lm. Measured forces
are shown with data markers. Solid curves show linear active and nonlinear
passive force curve fits.

The activation function f(t) in eq. 1 represents the buildup
of crossbridge bonds during contraction and the dissolution
of bonds during relaxation of the muscle. The time constants
τc and τr may be determined from experimental isometric
force curves by examining the rising and falling (respec-
tively) phases of isometric force plotted versus time. The

time constant tp is time to peak pressure and is directly
measured from the isometric force curve. f(t) measured
from one muscle strip is shown in fig. 2. The shape of
the isometric force curve, and consequently for f(t), is
little affected by changes in heart rate or inotropy, such as
varied calcium ion or addition of norepinephrine [2]. At the
same time, shape does vary from muscle strip to muscle
strip, suggesting that these model time constants need to be
determined once for a particular muscle.
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Fig. 2. Muscle activation function f(t) and values of parameters τc, τr

and tp for one muscle strip.

Figure 3 shows how well the model (eq. 1) and extracted
model parameters (Table I) describe measured isometric
force for one muscle strip. Dotted curves denote measured
forces and solid curves are computed from the model. One
equation and one set of parameters is able to describe the
entire set of isometric force curves.

Isotonic contractions attach the muscle strip to a fixed,
sub-maximal load against which it is allowed to shorten. The
muscle model was subjected to isotonic loading conditions,
shown in fig. 4. Plotted are muscle length and force for
seven different muscle loads. The muscle begins contracting
isometrically. When muscle force exceeds the load’s weight,
the muscle lifts the load, shortening. With time, the mus-
cle lengthens back to its original length and then relaxes
isometrically. The control model parameters for the 10 mm
long muscle strip were used.

Initial velocity of shortening was computed by taking the
tangent to the muscle length curve at the start of the isotonic
shortening phase. Plotting initial velocity of shortening,
vm, versus muscle load computed from the muscle model
yields the hyperbolic force-velocity relations shown in fig. 5.
This shape arises from the model without any additional
assumptions about shortening velocity, and without the need
to assume a hyperbolic function. The topmost curve is for
control conditions and initial muscle length of 10 mm. The
middle curve keeps muscle length at 10 mm, but reduces
the muscle’s contractile state, or inotropy, by decreasing
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Fig. 3. Measured isometric force curves (dotted), and modeled (solid) with
eq. 1 using the parameter values in Table I. Muscle lengths are 8.5, 9, 9.5
and 10 mm.

the model parameter c by 10%. This is akin to having
a weakened muscle from reduced calcium ion availability.
As shown, a different force-velocity relation results from
this change in contractile state. The bottommost curve was
computed for the control value of c, but for a shorter initial
muscle length. We see that the force-velocity relation is
sensitive to contractile state and loading conditions.

Muscle elastance computed via eq. 4 was found to be
strongly dependent on contractile state and loading condi-
tions. Fig. 6 shows elastance Em(t) computed for isometric
and isotonic conditions for the control muscle with length
10 mm, for the same muscle with reduced contractile state,
and for the control muscle at initial muscle length of 9 mm.
As shown, muscle elastance varies widely. For example, the
topmost curve (blue) corresponds to the control muscle at
initial length of 10 mm under isometric conditions. The green
curve below it corresponds to the same muscle under isotonic
conditions. As the muscle is permitted to shorten, the change
in muscle length decreases muscle elastance, thought to be
due to having fewer crossbridge bonds attached. Similarly,
the two bottommost curves are the isometric and isotonic
twitches for the control muscle at a shorter initial length
(9 mm). In between these two cases are the isometric and
isotonic curves for the muscle at 10 mm initial length
but with reduced contractile state. Each elastance curve is
unique; the dynamic model yields muscle elastance that is
as dynamic as the natural system.

IV. DISCUSSION

The muscle model (eq. 1) is built from isometric force
curves, yet it possesses the extensive dynamic behavior of
muscle strip. The model embodies the main features of
heart muscle dynamics, which are directly related to heart
dynamics. The Frank-Starling relation for the heart, including
both increased isovolumic pressure and increased ventricular
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Fig. 4. Isotonic contractions computed from eq. 1 using the same model
parameters as the isometric case (top force curve) for initial muscle length
10 mm, and for isotonic conditions for several loads. Plotted is muscle
length (top) and muscle force (below).
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Fig. 5. Initial shortening velocity during isotonic conditions plotted as a
function of load, giving Hill’s inverse force-velocity relation for muscle [4].

7178



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Time  [s]

M
us

cl
e 

El
as

ta
nc

e 
E m

 [m
N

/m
m

]

Fig. 6. Muscle elastance Em(t) computed for the control muscle with
initial length 10 mm under isometric conditions (topmost blue curve) and
for isotonic conditions (green curve). Other curves arise from a shortened
muscle (9 mm) or from reduced contractile state.

outflow during ejecting beats when the heart is filled more,
arises from muscle’s force-length relation. The model has
both passive (related to a and b) and active (related to
c and d) elastic properties that describe stretching of the
elastic heart chamber, plus active generation of force due to
formation of muscular crossbridge bonds. As preload of the
heart increases, both passive and active terms contribute; the
former from increased chamber stretch and the latter from
muscle’s force-length relation, believed to be due to more
optimal myofilament overlap permitting formation of more
crossbridge bonds [5].

Muscle elastance arises from both passive and active
muscle elastance terms, the former related to model param-
eters a and b, and the latter related to c, both of which
vary with muscle length, and hence ventricular volume. The
need to divide ventricular elastance into passive and active
components has been proposed by other investigators [6].
In this model, the passive term corresponds to increased
stretching of the passive elastic chamber and the active term
to changes in stiffness associated with the active formation
of crossbridge bonds.

Increased afterload (arterial pressure) requires the ventricle
to operate at a higher pressure (force) and, therefore, with
decreased outflow (velocity). Since blood ejection requires
work, less energy is available compared to the non-ejecting
heart beat and the beat duration is shorter.

Inotropic changes are believed to influence calcium ion
availability, which is thought to control the number of cross-
bridge bonds formed within the heart muscle. This property
is dictated in the model by parameter c, which modifies
the force-length relation. As expected, muscle elastance
computed using eq. 4 is directly related to parameter c,
reflecting the heart’s contractile state.

V. CONCLUSIONS

A single equation can be used to describe heart muscle.
Modeling a particular muscle requires extraction of model
parameters from measured isometric force curves at several
fixed muscle lengths. The resulting model can describe
both normal and pathological muscles under isometric and
isotonic conditions.

Lumped muscle models are commonly based on Hill’s
contractile element, embodied as a particular force-velocity
relation. Studies have shown that the measured force-velocity
relation varies with loading conditions [7], [8], a result
substantiated by these model studies. Maximum velocity of
shortening of the contractile element cannot be distinguished
from a shift due to change in muscle length, thereby invali-
dating it as an index of contractility [9]. Similarly, modeling
showed that the entire force-velocity curve is also not unique
for a particular contractile state and loading condition [3].

This model provides a dynamic measure of muscle elas-
tance that seems to uniquely characterize the muscle’s con-
tractile state. In addition, measuring model parameters from
a set of isometric force curves is much easier than measuring
the force-velocity relation for a particular muscle. This model
may be useful for characterizing the mechanical performance
of an individual muscle, or as a compact description of
muscle for a larger physiological model. It appears to meet
the goal of describing muscle as an elastic material that
changes due to metabolic processes, a goal recognized as
early as 1674 by Mayow [10].
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