
  

 

Abstract—Analyzing the muscle activities that drive the 

expressive facial gestures can be a useful tool in assessing one’s 

emotional state of mind. Since the skin motion is much easier to 

measure in comparison to the actual electrical excitation signal 

of facial muscles, a biomechanical model of the human face 

driven by these muscles can be a useful tool in relating the 

geometric information to the muscle activity. However, long 

computational time often hinders its practicality. The objective 

of this study was to replace the precise but computationally 

demanding biomechanical model by a much faster multivariate 

meta-model (surrogate model), such that a significant speedup 

(real-time interactive speed) can be achieved and data from the 

biomechanical model can be practically exploited. Using the 

proposed surrogate, muscle activation patterns of six key facial 

expressions were estimated in the iterative fit from the 

structured-light scanned geometric information. 

I. INTRODUCTION 

Facial expressions have been the subject of scientific 
investigation for nearly four centuries. One of the first studies 
that link facial expressions to state of mind was published by 
John Bulwer in the late 1640s [1]. This initial work was later 
extended by Charles Darwin [2], who demonstrated the 
universality of expressions and the commonality between 
man and animals. Another significant work on facial 
expressions was by Duchenne [3], in which for the first time, 
the electrical activities of muscles were linked to expressive 
facial motions.  These early researchers have sowed the seeds 
for hundreds of years of research into behavioral biology, and 
from their works, there is no question that facial expressions 
provide distinctive measurement to a person’s state of mind. 

The expressive motions of the face are intrinsically linked 
to the activity of facial muscles, and therefore, by measuring 
the electrical signals through electromyographic (EMG) 
techniques, the emotional state of mind can be accurately 
determined (see e.g. [4, 5]). However, measuring facial EMG 
signals can be a time-consuming and cumbersome task. 
Moreover, the number of muscles that can be measured is 
restricted by how many electrodes that can be attached to the 
face. Hence the practicality of using facial EMG is limited. 
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Alternatively, the emotional state of a person can also be 
inferred through visually recognizing and analyzing different 

facial motions (see e.g. [6, 7]). Nevertheless, these geometric 
interpretations are only descriptive, and do not provide 
physiological meaning to the movements that they measure. 

Here we present a methodology to determine the 
physiologically relevant muscular activities from geometrical 
information that can be easily obtained. To achieve this, we 
employed a highly detailed, muscle-driven, biomechanical 
model of the face that was previously developed [8] (Fig. 1).  
This biomechanical model can reliably generate a wide range 
of expressive movements; however, its long computational 
time inhibits using it for estimating muscle activities from 
experimental measurements. In order to address this, a 
surrogate-based modelling approach was undertaken that 
included the following steps: (a) the system is emulated 
statistically by developing a multivariate partial least squares 
regression (PLSR) meta-model based on the data from a 
simulation experiment, and (b) the original biomechanical 
model is replaced by the meta-model which is then used to 
determine the muscle activation levels by performing an 
iterative fit to the empirical geometric measurements. 

II. METHODS 

The biomechanical model of the face is controlled by a set 
of 18 input parameters (corresponding to the 18 muscles of 
facial expressions that were considered). Through 
physically-based equations, it yields output parameters that 
describe the geometric deformation of the facial mesh. A 
surrogate model (or multivariate meta-model) of the 
biomechanical system is based on a statistical modelling 
approach, where the exact physical relationship between the 
inputs and the corresponding outputs is more or less ignored. 
Instead, its behavior is characterized using a relatively simple 
mathematical function, fitted from a sample of simulation 
results that was obtained from a statistically designed 
numerical experiment (Fig. 2). 
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Figure 1.  Volume meshes of the superficial soft tissue continuum 

(left), muscles of facial expression (center) and deep structures (right). 
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A. Design of Experiment 

One of the main challenges in the surrogate-based 
modelling approach is to determine an optimal design of 
experiment (DOE) that captures the statistical characteristics 
of the system while requiring the minimal investment in 
obtaining new simulations. In this study, a multilevel 
extension to the 2

K-P
 factorial design was created using the 

multilevel binary replacement (MBR) method proposed by 
Martens et al. [9], and optimized for both space-spanning and 
space-filling [10]. Multilevel factorial design was employed, 
as it is believed that, compared to e.g. random sampling, the 
factorial approach in general facilitates the spanning of the 
high-dimensional input factor space more readily. Moreover, 
it also accommodates the modelling of nonlinear input-output 
relationships by splitting the parameter variables into equally 
spaced levels. 

In the factorial design, each factor in the input space (i.e. 
the level of muscle activation for each of the considered 
muscle), was discretized into four levels, and therefore 
making a total of 4

18
 possible combinations. Due to the 

limited computer resources, a strongly reduced simulation 
design with only 128 parameter combinations was employed. 
To extend this sparse design, converged intermediate 
solutions obtained from the stepping of activation parameters 
were also used, providing a total of 6081 observations of the 
system. 

B. Modeling input-output relationship 

In this study, the input-output relationship was emulated 
using a regression approach based on the principle of partial 
least squares (PLS; the acronym has later been explained as 
projection to latent structures). The two-block PLS regression 
[11] approach allows particularly relevant subspaces to be 
extracted from two or more data matrices. To avoid confusion 
with other PLS – based methods, Martens and Naes [12] 
named it “PLSR”; some authors simply write “PLS”, for 
short. 

The PLSR is a method for summarizing systematic 
relations between two sets of observed variables by means of 
estimated latent variables [13]. In contrast to traditional 
full-rank least squares methods that can cause a serious 
variance inflation problem and misleading parameter 

estimates [14], PLSR reduces the dimension of the system 
while preserving the most significant information (i.e. a 
shrinkage estimator), and uses intercorrelations among the 
variables for model stabilization. Here, PLSR is used for the 
classical (forward) meta-modelling context where the output 
solution is estimated statistically from a set of input variables, 
i.e. Outputs=f(Inputs).  

In order to model the nonlinearity and interaction of the 

input parameters, the input space ( KRx ) is often mapped 

to a higher dimensional feature space (
K*R)( φx , with 

KK* ). In this study, a quadratic surface projection [15] 
was used, with the 18-dimensional input space being mapped 
to a 189- dimensional feature space. Specifically, the original 
input data were extended by considering the squares and cross 
products of the entries. 
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The PLS method decomposes mean-centred Φ (input 
data that was transformed to the feature space) and Y (output 
data) matrices into bilinear structure models consisting linear 
combinations of score and loading matrices. 
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 where T and U are the orthogonal score matrices (i.e. 
latent projection of Φ and Y respectively), P and Q are the 
loading matrices, and E and F are residual matrices (i.e. the 
unexplained parts of Φ and Y respectively). The classical 
PLS method assumes that a linear inner relation between the 
scores exists (i.e. U=TD+H, where D is the diagonal matrix 
of regression coefficients and H denotes the matrix of 
residual that results from the linear inner relation mapping). 
The present polynomial PLSR combines the linear inner 
relation with (1). Replacing U by predictor TD gives the 
PLSR model. 

   *T1T
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in which W is an orthogonal weight matrix [16] and 
F

*
=HQ

T
+F (assumes E is negligible) is the combined 

residuals from the PLS decomposition and the inner relation 
mapping. To determine the parameter matrices (W, P, D and 
Q) from the training data, the non-linear iterative partial least 
squares (NIPALS) algorithm [17] was employed. Following 
this, given a new set of input data X, the corresponding output 
Y can be predicted. 

C. Cross-Validation and rank optimization 

Theoretically, for linear input-output systems, or for 
meta-model that is suitably extended to handle nonlinearities,  
a perfect prediction of the model’s outputs Y from its inputs X 
should be possible, since the X data and Y data are error free 
(apart from algorithmic problems such as inadequate 
convergence, round-off errors etc.). However, the problem is, 
if the statistical estimation process has estimated too many 
independent surrogate parameters, compared to the 
information content of the available training data, over-fitting 

 

Figure 2.  Diagrammatic representation of a conventional deterministic 

physical model (blue path), and its adaptation to the data-driven 

surrogate model (red path) via designed computer simulations and 
statistical regression modelling of the simulation data. 

 

7173



  

(due to over-parameterization) may arise. This means that 
small irrelevant variations in the input-output relationship are 
built into the model, whereby its predictive ability 
deteriorates. 

One of the main advantages of PLSR is that its rank can be 
managed via removing insignificant scores from the model. 
To determine the optimal rank, and hence reducing the 
possibility of over-parameterization, a four-fold 
cross-validation was used [12]. The optimal rank was chosen 
as the rank with highest predictive ability in Y. In the present 
study, a model with rank of 153 (i.e. the first 153 scores) was 
employed. If future tests reveal that the model is over-fitted 
and gives inadequate predictions in some parts of the 
parameter space, the PLSR model may then be improved with 
better nonlinearity handling and a new cross-validation study. 

Once the fast PLSR meta-model has been established, it 
replaces the original biomechanical model in a conventional 
iterative data fitting process [18] to estimate the model 
parameters X that give the empirically determined output Y. 

III. RESULTS 

The experimental data for the analysis were obtained 
using the Mephisto

®
 EX-PRO structured-light scanner 

(http://www.4ddynamics.com). Using this scanner, surface 
data of six key facial expressions were obtained (Fig. 3a). The 
average CPU time for computing a forward solution (input to 
output) using the described PSLR surrogate was 
approximately 100ms (On a standard quad-core 2.4GHz 
computer). As an error measure, the structured-light scanned 
data were projected onto the surface of the 
surrogate-deformed mesh. This metric was subsequently used 
in an iterative nonlinear optimizer which minimizes the RMS 
projection error. Table I summarizes the optimized muscle 
activation parameters. The converged RMS errors were 
0.56mm, 0.69mm, 0.86mm, 0.94mm, 1.24mm and 1.39mm 
for smiling with eyes closed, smiling with mouth opened, sad, 

terror, pain and crying expressions respectively. The 
deformed configuration for each expression is depicted in Fig. 
3b. 

IV. CONCLUSION & DISCUSSION 

The CPU time for computing a forward simulation using 
the surrogate model (100ms) was a significant speedup 
compared to the original biomechanical model, which takes 
an average of 2 hours per solution. As a result of this speedup, 
it became viable to apply the system to estimate muscle 
activation parameters from structured-light scanned surface 
data, which required multiple iterative forward solves. 
Following from this, the estimated muscle activation values 
can be associated with facial electromyographic (EMG) 
signal with a variety of applications, such as measuring 
emotional reaction for market research [19] and 
human-computer interactions [20]. 

Nevertheless, unlike facial EMG signal, the estimation of 
activation parameters from the surrogate model can be 
sensitive to a number of factors such as the noise in the 
scanned data, the initial registration of the data cloud to the 
mesh, and the simplifying assumptions of the underlying 
biomechanical model. Some of these factors can be addressed 
by incorporating experimental data on the trajectory path of 
the skin material points (e.g. with motion capturing 
technology), and to improve accuracy of the underlying 
biomechanical model. These improvements are the current 
direction of our research. 
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TABLE I.  ESTIMATED MUSCLE ACTIVATION VALUES. 

Muscle list 

Expressions 

Smiling 

(eyes closed) 

Smiling 

(mouth opened) 
Sad Terror Pain Crying 

Buccinator 0.84 0.08 0.00 0.00 0.63 0.11 
Corrugator supercilii 0.12 0.01 1.00 0.20 0.70 0.85 
Depressor anguli oris 0.00 0.04 1.00 1.00 0.23 1.00 
Depressor labii inferioris 0.00 0.26 0.00 0.99 0.00 0.01 
Depressor supercilii 0.02 0.00 0.00 0.00 1.00 0.64 
Frontalis 0.00 0.03 0.14 0.27 0.00 0.00 
Levator anguli oris 0.18 1.00 0.00 0.04 1.00 0.55 
Levator labii superioris 0.08 0.16 0.01 0.01 0.28 0.91 
Levator labii superioris alaeque nasi 0.00 0.21 0.00 0.00 0.00 1.00 
Mentalis 0.08 0.00 0.22 0.01 0.20 0.06 
Orbicularis oculi (orbital part) 0.04 0.05 0.04 0.00 0.99 0.99 
Orbicularis oculi (palpebral part) 0.28 0.00 0.00 0.00 0.13 0.10 
Orbicularis oris 0.00 0.00 0.21 0.00 0.01 0.00 
Platysma 0.00 0.04 0.31 1.00 0.49 1.00 
Procerus 0.00 0.00 0.20 0.00 0.23 0.45 
Risorius 0.10 0.01 1.00 0.88 0.29 0.16 
Zygomaticus major 1.00 1.00 0.00 0.00 0.39 0.41 
Zygomaticus minor 0.39 0.52 0.00 0.00 1.00 1.00 

* The muscle activation values are normalized between 0 and 1. 
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Figure 3.  Optimization of muscle activation pattern, showing (a) 3-D surface data of facial expressions obtained from structured-light scanner, and (b) 

the surrogate-based simulations of corresponding expressions with the optimized muscle activation. The 3-D surface data are projected onto the deformed 

mesh displaying the Euclidean distance of the projections. 
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