
  

  

Abstract— In this paper, we propose a rectangular 
tetrahedral adaptive mesh based corotated finite element model 
for interactive soft tissue simulation. Our approach consists of 
several computation reduction techniques. They are as follows: 
1) an efficient calculation approach for computing internal 
forces of nodes of elastic objects to take advantage of the 
rectangularity of the tetrahedral adaptive mesh; 2) fast shape 
matching approach by using a new scaling of polar 
decomposition; 3) an approach for the reduction of the number 
of times of shape matching by using the hierarchical structure. 

We implemented the approach into our surgery simulator 
and compared the accuracy of the deformation and the 
computation time among 1) proposed approach, 2) L-FE), and 
3) NL-FEM. Finally, we show the effectiveness of our proposed 
approach. 

I. INTRODUCTION 

Computationally efficient deformation simulations of 
organs are required for surgery training systems. This 
necessity is increased especially in the case of presenting 
reaction forces (e.g. reaction forces while touching or grasping 
the organs). This is because a higher update rate (about several 
hundred [Hz]) of deformation simulation is required for stable 
force presentation. 

To date, as typical deformation models for elastic objects; 
1) the mass spring model (MSM) [1] and 2) the finite element 
method (FEM) [2] have been proposed. The MSM is often 
solved by different methods (e.g. Euler method) and 
computation time of the MSM per step is low. However, a 
higher update rate of the simulation is required. Furthermore, 
the relationship between spring constants and physical 
properties of real elastic objects is not clear.  In contrast with 
MSM; FEM is based on continuum mechanics. Simulation 
results using FEM works well with real elastic objects. 
However, computation cost of FEM is high because FEM is 
often solved by large scale simultaneous equations and 
implicit methods (e.g. backward Euler method). Thus, in any 
case, computation cost of deformation simulations of the 
organs becomes a problem. 

In addition, because large deformations which involve 
rotations often occur in organs during surgery [3-4], 
deformation simulations for the surgery simulator must satisfy 
the ability to consider geometric nonlinearity. Thus, 
computationally efficient deformation simulations which are 
based on continuum mechanics and can consider geometric 
nonlinearity are required. 
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One such deformation model, Saint Venant Kirchhoff 
(StVK) Model was proposed. Delingette [5] and Kikuuwe et al. 
[6] proposed computationally efficient simulation approaches 
for the StVK Model. They modeled the StVK Model by 
biquadratic and quadratic springs, and used it to compute 
object deformation. However, acceleration as the theoretical 
value is not realized due to a delay caused by random memory 
access in the computation. 

Recently, in the field of computer graphics, corotated FEM 
[7] has been proposed. In corotated FEM shape matching 
between tetrahedral elements before deformation and the 
tetrahedral elements after deformation is performed to define 
the local coordinate system of each tetrahedral element and 
remove component of rotational motion. The deformation 
calculation using a linear deformation model is performed on 
the local coordinate system thus geometric nonlinearity has 
become possible. However, there is a problem that a large 
amount of computation is required for this matching 
(extraction of the component of the rotational motion) [8]. 

Also, as other acceleration approaches, 1) multi-resolution 
models [9-11] and 2) parallel computation approaches [12-16] 
have been proposed. By applying these approaches to the 
above models, further acceleration can be expected. 

In this paper, a novel efficient computation approach for 
corotated FEM is proposed. We introduce and state several 
computation reduction techniques. These are as follows. 1) An 
efficient calculation approach for computing internal forces of 
nodes of elastic objects to take advantage of the rectangularity 
of the tetrahedral adaptive mesh [17] in a binary tree based 
multi-resolution model. 2) Fast shape matching (extraction of 
the component of the rotational motion) approach using a 
polar decomposition method proposed by Byers [18]. 3) An 
approach to reduce of the number of times of shape matching. 
This is realized by substituting the rotation of tetrahedra at 
deep depth for rotation of tetrahedra at shallow depth. 

In our evaluation experiment, we compare the accuracy of 
deformation and computation time among 1) proposed 
approach, 2) linear finite element model (L-FEM), and 3) 
nonlinear finite element model (NL-FEM). Then, we show the 
effectiveness of our proposed approach. 

II. MULTI-RESOLUTION DEFORMATION MODEL 

We proposed a multi-resolution model using a tetrahedral 
adaptive mesh [17].  

In the tetrahedral adaptive mesh generation the 3D region 
(elastic object) is initially enclosed with six root tetrahedra as 
shown in Figure 1. Then, according to local field properties 
(e.g. material properties or curvatures of isosurfaces) observed 
at the nodes the root tetrahedra are recursively bisected 
(subdivided at the middle point of the longest edge of the 
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tetrahedra) independently in the region of rapid field variation. 
This subdivision process is repeated until the entire volume is 
approximated with the given accuracy criterion. At the same 
time object surfaces are constructed using the marching 
tetrahedra method [19]. 

In online re-mesh deformation simulation each tetrahedron 
is recursively refined (bisected) or simplified according to the 
rate of elongation σ of the longest edge of the tetrahedron.  

The advantages of our online re-mesh approach using the 
tetrahedral adaptive mesh are as follows. 1) Low computation 
cost: Computational complexity of these processes is 𝑂(log𝑛), 
because neighboring regions considered in the subdivision is 
limited. 2) High quality mesh: In our approach only three 
types of tetrahedra are used (Figure 2). The lower limit of 
aspect ratio of these tetrahedra is 0.64. The upper limit of the 
radius-shortest edge ratio of these tetrahedra is 1.11. 

  
Figure 1. Six root 

tetrahedral. 
Figure 2. Binary refinement and 

simplification. 

III. RECTANGULAR TETRAHEDRAL ADAPTIVE MESH BASED 
COROTATED FEM 

In this section, at first, we explain an overview of corotated 
FEM. Then, we propose 1) an efficient calculation approach 
for computing internal forces of nodes of elastic objects taking 
advantage of rectangularity of the tetrahedral adaptive mesh 
[17] in a binary tree based multi-resolution model. 2) Fast 
shape matching (extraction of the component of rotational 
motion) approach using a polar decomposition method 
proposed by Byers [18]. 3) An approach to reduce shape 
matching which is realized by substituting the rotation of 
tetrahedra at deep depth for rotation of tetrahedra at shallow 
depth. 

A. Overview of Corotated Finite Element Model 
In linear FEM, the relationship between elastic force vector 

fTL of nodes of tetrahedron T and displacement vector uT  of 
nodes of tetrahedron T is described by a linear equation, as 
follows: 

KT uT = fTL (1) 

where KT  is a stiffness matrix of tetrahedron T. 

In contrast, in the corotated FEM, elastic force fTC  is 
calculated by 

RT KT �RT
−1xT −x0_T� = fTC, (2) 

where RT , xT  and x0_T are a rotation matrix of tetrahedron T, 
a position vector of nodes of tetrahedron T  and an initial 
position vector of nodes of tetrahedron T respectively. At this 
time the computational cost of extraction of RT and the 
calculation of the whole equation (2) becomes a problem. 
Figure 3 shows the calculation process of the corotated FEM. 

 
Figure 3. Calculation process of corotated FEM. 

B. Efficient Calculation Approach for Internal Forces- 
Taking Advantage of Rectangularity of Tetrahedra 

 In equation (2), the elastic force is calculated using the 
stiffness matrix  KT  of tetrahedron T. As shown in Figure 2, 
our tetrahedral adaptive mesh only consists of three types of 
shapes of rectangular tetrahedra. Therefore, we propose an 
efficient calculation approach to take advantage of this 
orthogonality.  

We define local coordinate systems which along with 
orthogonal axes of these rectangular tetrahedra are shown in 
Figure 2. Using these local coordinate systems, 49 [%] of 
elements of the stiffness matrix  KT  of tetrahedron (TYPE0) 
become 0, 28 [%] of elements of the stiffness matrix  KT  of 
tetrahedron (TYPE1) become 0, and 39 [%] of elements of the 
stiffness matrix  KT  of tetrahedron (TYPE2) become 0. Thus, 
acceleration approximately proportional to these ratios is 
possible. 

C. Fast Shape Matching Approach Using Byers’ Polar 
Decomposition 

In corotated FEM, extraction of the rotation matrix RT  is 
required. A translation matrix A which contains rotation and 
stretching parts of tetrahedron T is expressed as follows: 

� A 𝑡

0 0 0 1

�

= �

𝑞1𝑥 𝑞2𝑥
𝑞1𝑦 𝑞2𝑦

𝑞3𝑥 𝑞4𝑥
𝑞3𝑦 𝑞4𝑦

𝑞1𝑧 𝑞2𝑧
1 1

𝑞3𝑧 𝑞4𝑧
1 1

� �

𝑝1𝑥 𝑝2𝑥
𝑝1𝑦 𝑝2𝑦

𝑝3𝑥 𝑝4𝑥
𝑝3𝑦 𝑝4𝑦

𝑝1𝑧 𝑝2𝑧
1 1

𝑝3𝑧 𝑝4𝑧
1 1

�

−1

, 

(3) 

where p and q are position vectors of nodes in the undeformed 
tetrahedron T and position vector of nodes in the deformed 
tetrahedron T respectively. 

In this paper, we used Byers’ polar decomposition approach 
[18] for the extraction of the rotation part. The following 
iterative computation (equation 4) is performed until a 
convergence condition r < 𝜎  is satisfied, where σ  is 
threshold of the convergence. The variables a  and b  in 
equation 5 are determined by a ≤ ‖𝑋0−1‖2−1 and b ≥ ‖𝑋0‖2, 
respectively. 

Xk+1 =
1
2

(ζkXk + ζk−1Xk−∗) (4) 
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ζ0 =
1
√ab

, ζ1 =
�

2

�b
a + �a

b

, ζk = �
2

ζk−1 +  ζk−1−1  (5) 

r = ‖Xk −  Xk−∗‖F (6) 

D. Shape Matching Computation Reduction Using 
Hierarchical Structure 

As stated in the subsection above, the computational cost of 
shape matching is still high when using efficient polar 
decomposition. Therefore, we propose an approach to reduce 
the amount of computation of shape matching using the 
hierarchical structure of the binary tree of the tetrahedral 
adaptive mesh. 

In tetrahedral adaptive mesh generation, as shown in Figure 
1 and Figure 2, the six root tetrahedra are recursively bisected 
and then the binary tree is constructed. In this process, two 
child tetrahedra are generated from one parent tetrahedron and 
four grandchild tetrahedra are generated from one parent 
tetrahedron and so on. Therefore rotation matrices of these 
child or grandchild or descendant terahedra are similar to their 
ancestor tetrahedra. 

We propose an approach for the reduction of the number of 
times of shape matching. This is realized by substituting the 
rotation matrices of descendant tetrahedra for rotation 
matrices of ancestor tetrahedra. 

IV. EVALUATION EXPERIMENT 

A. Evaluation Model 
Figure 4 shows an initial tetrahedral mesh (all tetrahedra 

were TYPE0, subdivision levels of the tetrahedra were 6) of a 
soft tissue model which was used in this evaluation 
experiment, and Table 1 shows detailed information of the 
model. As shown in Figure 4, the model was rectangular 
shaped and its size was 64×64×192 mm. A fixed boundary 
condition was applied to nodes on a plane (z=0). We set 
Young’s modulus E=0.5 kPa, Poisson’s ratio 𝜈=0.49, and 
density 𝜌=10 Kg/m3. We used σ=3.85e-5 as the threshold of r 
in equation (6). We applied acceleration of gravity g=9.8 
m/s2 (negative direction of y axis) to all nodes of the model. 

In this experiment, we used a PC (CPU: Intel Xeon w3530 
2.8 GHz, Memory:8 GB,  OS:Scientific Linux release 6.1). 

We compared the accuracy (error) of deformation and 
computation time among 1) proposed approach, 2) linear FEM 
(L-FEM), and 3) nonlinear FEM (NL-FEM).  

 
Figure 4. Experimental Model. 

Table1. Detail of Experimental Model. 
number of nodes 325 
number of tetrahedra 1152 

B. Evaluation Result 
Figure 5 shows computation time of each model. The 

“Level 3’s R” shows the results of corotated FEM whose 
rotation matrices were substituted by the rotation matrices of 
their ancestor tetrahedra (in case of “Level 3’s R”, its 
subdivision level was 3). As shown in Figure 5, we can see 
that the computation times of calculated rotations are 
drastically reduced in proposed approach. 

Figure 6 shows results of deformation after 80 s was elapsed. 
We can find that the results of corotated FEM were very 
similar to the result of NL-FEM. L-FEM remained larger in 
volume than the other approaches. Figure 7 and Figure 8 show 
results of errors of the displacement of a node whose initial 
position was (32, 32, 192). These errors were calculated by 
comparing with the NL-FEM. Maximum error of corotated 
FEM was under 3.6 mm. Even in the case of using the rotation 
of higher hierarchical level of tetrahedra, no significant error 
was observed. In contrast, an error of L-FEM was 22 mm. 

Thus, the effectiveness of our proposed approach was 
confirmed. 

 
Figure 5. Computation Time. 

 

Figure 6. Deformation. 

 
Figure 7. Error of Displacement. 
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Figure 8. Error of Displacement (closeup). 

V. DISCUSSION 

A. Further Evaluation 
In the previous section, simulation results of L-FEM and the 

proposed approach were compared to those of NL-FEM. In 
general, the errors of simulation results are caused by the 
accuracy of physical model, resolution of mesh and time step, 
shape and order of the elements. Also errors may occur 
depending on whether the material or geometrical nonlinearity 
is considered or not, and which numerical solution (e.g. Euler, 
Runge-Kutta, implicit) is used.  

In the experiment, we confirmed that the accuracy of 
geometric nonlinearity only. In future, we are going to 
preform further evaluation experiments to confirm the 
accuracy of the physical model, and so on. 

B. Consideration of Anisotropy 
Also, in the previous section, we did not mention the result 

of the edge based StVK model [5-6]. In fact, the computation 
time of the edge based StVK model was about the same as the 
proposed model. However, the edge based StVK model has 
one drawback which is consideration of anisotropy is difficult. 
In contrast, our approach is able to consider the anisotropy.  

C. Consideration of Arbitrary Object Shape 
We are developing an adaptive and embedded deformation 

model in order to realize the real-time simulation of complex 
inhomogeneous objects such as organs which have arbitrary 
object shapes and inhomogeneous physical properties [20]. 
This approach would be able to use in the proposed approach. 

D. Further Acceleration 
In recent years, computational capability of many core 

processors, i.e. CPU, GPU or FPGA have reached new heights 
of numeric capacity. We are developing efficient computation 
procedures and data structure of this approach for GPU. In the 
future, further acceleration will be possible. 

VI. CONCLUSION 
In this paper, a novel efficient computation approach for the 

corotated FEM was proposed. We introduced several 
computation reduction techniques, as follows: 1) an efficient 
calculation approach for computing internal forces of nodes of 
elastic objects to take advantage of the rectangularity of the 
tetrahedral adaptive mesh; 2) fast shape matching approach by 
using a new scaling of polar decomposition; 3) an approach 

for the reduction of the number of times of the shape matching 
by using the hierarchical structure. 

In our evaluation experiment, we compared the accuracy of 
the deformation and the computation time among 1) proposed 
approach, 2) L-FE), and 3) NL-FEM, and then we showed the 
effectiveness of our proposed approach. 
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