
  

 

Abstract— Automated retina image analysis has reached a 

high level of maturity in recent years, and thus the question of 

how validation is performed in these systems is beginning to 

grow in importance.  One application of retina image analysis is 

in telemedicine, where an automated system could enable the 

automated detection of diabetic retinopathy and other eye 

diseases as a low-cost method for broad-based screening.  In 

this work, we discuss our experiences in developing a 

telemedical network for retina image analysis, including our 

progression from a manual diagnosis network to a more fully 

automated one.  We pay special attention to how validations of 

our algorithm steps are performed, both using data from the 

telemedicine network and other public databases. 

I. INTRODUCTION 

Diabetes afflicts more than 25 million people in the 
United States of America, with a projected increase to 115 
million in the next four decades [1].  Diabetic Retinopathy 
(DR), the leading cause of blindness in the industrialized 
world, is one of many complications that can arise from 
diabetes. Thus there is a need for achieving inexpensive, 
broad-based screening for DR, which has led to a variety of 
image processing and pattern recognition approaches.  For 
the purposes of this paper, we refer to this work as “Retina 
Image Analysis” (RIA) and it includes work in automated 
screening as well as image processing based tools to enhance 
measurements of physiology.  During the past several years, 
these algorithms and the systems that use them have begun to 
reach high levels of maturity, and much of the published 
literature in RIA has shifted from algorithms that detect the 
signs of eye disease or eye features to algorithms that 
generate measurements of ocular conditions or estimate the 
probability of eye disease [2].  

Many efforts in this field have originated as a 
collaborative effort between an ophthalmologist or group of 
ophthalmologists and a team specializing in machine or 
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computer vision.  This is certainly true of our case, as our 
collaboration involves researchers at Oak Ridge National 
Laboratory (ORNL) and the University of Tennessee Health 
Sciences Center Hamilton Eye Institute (HEI).  
Collaborations such as ours have led to interesting and 
innovative approaches, but it has also led to a large body of 
“private” data that cannot be shared between research groups 
for a variety of reasons.  This has led to problems, ranging 
from the ever-present issue in machine-based detections (the 
fact that there is never enough good quality, ground-truth 
data) to more fundamental questions as to how repeatable or 
transferrable different algorithmic approaches are between 
different patient populations and imaging devices.  
Recognition of this situation has led to a consensus paper 
published by 14 international RIA research groups [3].  
“Validation” in this context refers to determining the true 
effectiveness of the systems that are used to perform RIA.   

There are a large number of applications in computer 
vision and machine learning where public data sets exist with 
a goal toward furthering the state-of-the-art.  This includes 
data sets of hand-written images [4] and facial images [5], 
among others.  These data sets have advanced these fields by 
providing common standards to evaluate algorithms and 
approaches. There are also other “Grand Challenge” type 
problems such as multi-modal biometrics [6] and visual 
object recognition [7] among others.  Standardized training 
and testing data are created, then a set of secret validation 
data are generated for testing purposes.  Participants must 
embed their algorithms within a framework for ease of 
testing by the challenge coordinators. These problems also 
often have annual revisions where new data and new 
annotations are introduced.  This type of approach would 
serve many domains well, provided there is a sufficient body 
of research groups to warrant the efforts required to generate, 
tag, and organize the data sets.  But such an approach may 
not be feasible for highly specialized domains such as 
ophthalmology, where it is not always obvious to the layman 
that there is actually an issue with a particular retina. By 
comparison, for example, virtually anyone could properly 
ground-truth a data set of face images and non-face images.  
Currently the closest RIA equivalent is the Retinopathy 
Online Challenge from the University of Iowa [8].   

In this paper, we describe our RIA application, which is a 
telemedical network designed to detect retina disease.  We 
then describe the individual components of automation and 
our experience with the problem of validating our work, both 
in terms of making an effective detection system and in terms 
of proving our work to the research community.  
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II. BACKGROUND 

Our objective in this work has focused on an application 
for ophthalmic screening: the Telemedical Retinal Image 
Analysis and Diagnosis (TRIAD) Network, based in the 
Mid-South region of the United States [9].  TRIAD provides 
retina screening to diabetic patients in a primary care clinic 
environment in communities with disparities in healthcare.  
TRIAD has been a functional telemedicine network since 
Feb 2009.  A supervisory ophthalmologist (SO) reviews each 
patient eye submitted.  Fundus images of diabetic patients 
are submitted to a workflow process through TRIAD’s 
secure, HIPAA-compliant architecture and stored in a 
database. A notification is sent to the SO for the clinic, who 
prepares a recommendation delivered via secure protocols to 
the general practitioner.  There is a single automated 
component in this configuration, the quality assessment (QA) 
of the captured images [10].  Over time, greater levels of 
automation have been introduced:  anatomical feature 
localization [11], lesion detection [12-14], and diagnosis 
[15].  The very nature of the network creates a useful 
validation mechanism, as any algorithms which are 
developed on a set of data prior to a particular date, that 
utilize training data from before that date, can be validated 
by using test data collected AFTER the date of interest.  This 
method should work to improve performance over time, 
especially when using on-line supervised learning 
approaches as more data becomes available.  

III. FEATURE AND ANOMALY DETECTION 

The different automated components of the TRIAD 
system each have different levels of validation needs and 
issues due to both our approach and the complexity of the 
task (both in terms of technical difficulty and the level of 
domain knowledge needed to perform validation).  In this 
section we discuss the validation process utilized for image 
quality assessment, vascular detection, optic nerve (ON) and 
macula localization, lesion detection and disease 
stratification.  We conclude the section with some special 
issues regarding confidence metrics and temporal or 
longitudinal studies. 

A.  Image Quality Assessment 

A diabetic patient who receives services at a primary care 
clinic served by the TRIAD Network can have their retinas 
scanned by an operator using a state-of-the-art non-mydriatic 
fundus camera.  However, the quality of this image must be 
verified, as even these relatively easy-to-use cameras can 
produce images that are out of focus or non-uniformly 
illuminated. The method [10] consists of vascular 
segmentation [16], then a variety of measurements in 
localized neighborhoods in the retina image.  These 
measurements were used to train a support vector machine to 
map features to manually assigned quality rankings.  During 
the development hold-one-out validation was used for 
training and testing.  An additional set of images, which were 
completely independent of the algorithm development set, 
was utilized to investigate the effectiveness of the quality 
assessment (QA) method. The QA module output is 
compared to a simple threshold and the image is graded 

passing or failing.  Any images that fail QA trigger a re-
acquisition request.  However, the operator can decide that 
the image is as good as possible, which also allows for cases 
where the QA may not be accurate, the threshold level for 
the image may be too conservative.  Also, while the QA 
module maps the retina to a continuous functional ranking of 
quality, comparison to the threshold value is the main criteria 
and thus we simply have to make a yes/no decision on the 
image quality, which simplifies the validation process.  Post-
development, QA is tracked by the SO.  We have found that 
over time the values used have proven effective in triggering 
the re-imaging of patients in the clinics, and images above 
the threshold have unfailingly been sufficient quality for 
diagnosis.  Indeed, in some cases we have found that a clinic 
that begins to deliver lower quality images has had a 
personnel change that requires additional training.  With 
respect to validating the method, we rely on the continuous 
acquisition and QA of images received post-development.   

B.  Vascular Detection 

A large number of retina research groups have performed 
interesting work in the detection, tracing, and measurements 
of vascular networks in the retina.  In the TRIAD system, 
however, to date the vascular segmentation has been a means 
of evaluating the image quality and locating the optic nerve 
and macula. Consequently, the validation process for 
vascular detection accuracy has largely been unstudied by 
our group. 

C.  Optic Nerve and Macula Detection 

The ON and macula detections establish a coordinate 
system for the retina and eliminate a potential source of false 
positives. The ON and macula localization is described in 
[11].  Four neighborhood features are measured from the 
image intensity and vascular segmentation on a pixel-by-
pixel basis.  A Gaussian model is used to estimate the 
probability of a pixel residing in the ON, after training with 
manually labeled ON centers. The manually labeled ON 
centers are also used to form an a priori estimate of the 
probability density function (PDF), so that the Gaussian 
parameters and PDF are used to compute a likelihood ratio 
function using maximum a posteriori  (MAP) estimation.  
The pixel of the highest likelihood is declared the optic 
nerve center, then by modeling the vascular tree as a 
parabola the macula is found by assuming a fixed distance 
from the ON at the angle indicated by the parabolic fit.  Note 
that the a priori estimate is enhanced by the fact that modern 
fundus cameras label the image as right and left-eye. 

In our early development we focused on a custom dataset 
from an ophthalmology practice, which was not 
representative of images from a screening environment.  As a 
measure of success for ON location, we used histograms of 
Euclidean distance between the ground-truth position and the 
estimated position, often normalized by the mean ON radius; 
thus any values below 1 indicated the estimated position 
resided on the ON.  In our experience, establishing the 
ground-truth locations for the ON and macula is 
straightforward and can be performed satisfactorily by non-
clinicians.  Once we were satisfied with our approach, we 
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used the publicly available STARE dataset [17] for further 
testing as discussed in [11].  However, we note that this set is 
somewhat challenging and also does not represent the data 
seen in a typical screening environment, where the algorithm 
performs much better (greater than 98% success). We have 
tested the algorithm on TRIAD data post-development [18] 
and we have also used [14] the MESSIDOR [19] data set 
with ground-truth established by our team.  Thus in this 
measurement we have relied on public data sets and our own 
post-development data sets for validation. 

D.  Lesion / Anomaly Detection 

The detection of lesions and anomalies is the most 
important phase of this activity.  Our approach has been to 
develop custom detectors for the most prominent lesion 
types, which are then optionally post-processed to reduce 
false positives, and amalgamated into a set of lesion 
population features which are used to generate a vector 
descriptor of the image for supervised learning.   

In early work, we relied on the image set from an 
ophthalmic practice, with ground-truth by E. Chaum.  Our 
initial goals were to test the feasibility of a set of descriptors 
of lesions and their amalgamation into the population vector, 
in a content-based image retrieval (CBIR) method [15], with 
manual lesion segmentation.  As our work advanced, we 
began to explore automated methods for lesion detection and 
relied on image sets from the TRIAD network.  Some initial 
ground-truth was created for a small number of these images 
(137 images), and we have relied on those ground-truth sets 
for our further development.  We have found several issues 
with ground-truth data in this context.  First, it is impossible 
to perfectly duplicate a human segmentation (and ground-
truth is often inconsistent between experts).  Instead, a 
measure of success or true positive has been defined as 
simply detecting the anomaly.  Second, in many images 
where a lesion type is identified, particularly a case where a 
patient has many examples of the lesion, it is common for the 
ground-truth to miss lesions.   This causes confusion in the 
training set because a machine-learning algorithm could 
identify a true lesion that the clinician missed.  To 
circumvent this problem, we used ground-truth lesions as 
examples of “true positives” and then obtained examples of 
“true negatives” from images with a normal state (no signs of 
DR, AMD, or other diseases) that were confirmed as having 
no lesions present.  A third and final issue is simply the shear 
difficulty of obtaining ground-truth on retina lesions.  
Ophthalmologists are an extremely limited resource and 
perform extremely important tasks regarding the health and 
quality of life of people daily, so finding and making time to 
perform ground-truth can be difficult to achieve.  It is also 
fair to say that the medical profession in general has not 
embraced the possibility of automated screening or even 
telemedicine, and this too can cause issues as there has not 
been a dedicated effort or push to produce the type of data 
needed in machine learning applications.  Despite this 
difficulty, we have pressed on with the ground truth data 
available and steered our efforts towards detectors that use 
threshold methods, and thus have not relied on post-
processing to remove false-positives.  We describe each 
detection method we have used in some detail below. 

1) Microaneurysm and Hemorrhages 
Microaneurysms – dilated blood vessels that appear as 

small dark spots in retina images – and blood dot 
hemorrhages are the primary indicators of DR.  In the 
TRIAD data set, roughly 15% of patient eyes contain 
microaneurysms based on the diagnosis of the entire retina.  
Our research in detection methods for these lesions has 
utilized a radon transform approach [12] with a supplemental 
supervised-learning method applied adaptively and 
interactively, minimizing the need for clinician ground-truth.  
We have also explored the use of semi-supervised learning 
[20] for detection.  For validation, we have relied on the 
ground-truth data available with our TRIAD data, and also 
have used the Retinopathy Online Challenge [8], which is an 
extremely important example of a public dataset for lesion 
detection validation. 

2) Exudates 

Diabetic Macular Edema (DME) is a complication of 

DR; it is a swelling of the retina due to fluid leakage from 

chronic damage due to elevated blood sugar levels.  The 

primary means of detecting DME in monocular retina images 

is inference through the presence of exudates, lipid deposits 

that appear as bright lesions with well-defined edges in the 

retina.  In the TRIAD data set, roughly 4.5% of patient eyes 

contain exudates based on the diagnosis of the entire retina.  

Our method for exudate detection utilizes a sequence of 

specialized image processing steps as described in [13, 14]. 

Additional research into the mapping of exudate detection 

into a feature vector capable of identifying the overall 

condition of DME has also been performed [14].  Our team 

has used our ground-truth data for exudates, along with some 

additional normal data sets, and created the HEI-MED data 

set which is publicly available for download [21].  This set 

of 169 images features ground-truth data, including the 

quality scores using our QA method, the ground-truth ON 

and macula locations, clinician exudate segmentation, and 

overall disease diagnosis. Validation of the DME detection 

processing has been performed using three sets: the HEI-

MED set, MESSIDOR, and DIARETDB1 [22].  The latter 

two sets were useful for this validation, because they include 

diagnosis results for the image, although they do not have the 

ethnic variability of TRIAD and HEI-MED.  The DME 

detection processing was also tested with the MESSIDOR 

data set using inner-rater statistical measures (Kappa and 

AC1) with two ophthalmologist collaborators[14]. 

3) Drusen 
Drusen are subretinal pigment epithelial deposits that 

resemble yellowish blobs in retina images.  They can be 
characteristic of age-related macular degeneration (AMD), 
but can be found in images diagnosed as “normal”.   [24]. 
Drusen tend to be less common in TRIAD and images 
diagnosed with age-related macular degeneration (AMD) are 
rare, composing only 0.5% of the images.   A substantial 
number (4%) of normal retinas show some signs of drusen.  
We have performed some initial research in drusen detection 
[23].  This work used data from the second Age Related Eye 
Disease Study (AREDS) for drusen progression examples, 
and the TRIAD network for examples of non-drusen images 
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and non-drusen progression image sequences.  The detection 
method was based on color transformations and statistical 
models of drusen and retina wall structures.  Although we 
believe our preliminary work in this area shows promise, the 
validation methods are limited. 

4) Other Anomalies 
Other retina conditions fall outside the previously 

described anomalies.  In TRIAD, approximately 2.5% of the 
images show signs of other disease types that require some 
means of detection. Validation of these types of detectors is 
problematic, given the limited number of data. 

F.  Other System Issues 

The diagnosis of the disease state is the ultimate goal of 
the system, and to this point the validation has relied on 
standard hold-one-out methods and post-development data 
from the TRIAD method, with the exception of the DME 
estimation discussed previously. As discussed in [2], for 
safety issues systems such as TRIAD in automated mode 
should minimize false negatives, with a trade-off of more 
false positives, which could be screened by the SO.  Thus, 
we have investigated means of assigning a confidence to the 
various measures made by the automated components.  
These include a confidence for disease stratification [15] 
based on Poisson statistics, and a confidence for optic nerve 
location using complementary methods [18].   

Finally, we address the issue of temporal changes for 
recurring patients, which we envision undergoing a 
comparison with their previous visits.  The data obtained up 
to September 2012 shows 18% of patients have returned at 
least one time, however very few showed disease 
progression.  Handling temporal change is therefore a 
particularly difficult exercise in validation.  One possible 
method for creating test and training data for such cases is 
the introduction of artificial lesions into the subsequent 
retinas of returning patients.  This is a rather imperfect 
approach, however it may well be the only possible 
validation method without acquiring more data and finding 
actual cases of disease progression. 

IV. CONCLUSION 

In this work we have reviewed the approach taken by the 

ORNL-UTHSC team in developing a telemedical network 

for the automated detection of DR and other eye diseases. 

With respect to validation, our work has shown the 

importance of public databases to develop algorithms and 

verify their performance.  In our experience, due to its nature 

TRIAD could be developed without public data sets, the 

effectiveness of the algorithms is hard to compare with other 

approaches if only private data is considered.  The difficulty 

of generating useful public data, however, is understandable 

given the application domain and other factors, such as 

privacy of protected health information (HIPAA compliance) 

and intellectual property concerns.  In addition to computer 

vision researchers, ophthalmic medical groups should be 

engaged as well to bring about effective solutions. 
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