
  

  

Abstract— Newborn’s brain has a various shape, and easily 
changes with not only brain developing and cerebral diseases. 
Although the brain segmentation in MR images is an effective 
way to quantify the brain shape and size, there are few studies in 
neonatal brain MR image analysis. This paper introduces a 
novel method based on fuzzy connectedness (FC) with fuzzy 
object model (FOM). FOM is built from a training dataset, and 
gives fuzzy degree belonging to parenchyma with respect to 
location and intensity. FC is calculated from object affinity and 
homogeneous affinity, and the object affinity is given by the 
FOM. The method first segments the white matter, and then 
segments the surrounding cortex. The propose method has been 
applied to 10 newborn subjects whose revised age was between 
-1 month and +2 month. Leave-on-out cross-validation 
(LOOCV) was conducted, and the mean false-positive volume 
fraction was 1.33%, the mean false-negative volume fraction was 
2.90%, and geometric-mean was 1.42%. 

I. INTRODUCTION 

Newborn’s brain fast changes by the brain development, 
and also by cerebral disorders. To investigate the newborn’s 
brain, magnetic resonance imaging (MRI) is a promising way 
because it can acquire anatomical information non-invasively 
with high-contrast. Because MR images composed of over 
one hundred sectional images, we need visualization and 
quantification methods. For example, the cerebrum shape is 
visualized by volume rendering, and the size is quantified by 
measuring volume or surface area. Thus, automated cerebral 
segmentation is the fundamental and the crucial process.  

As conventional analysis methods for newborn brain MR 
images, Weisenfeld et al. showed a method based on a 
probability density map [1], which is used to estimate 
probability function. Prastawa et al. showed a method using a 
registered probabilistic brain atlas [2]. They also utilize the 
probabilistic brain atlas to estimate the probability function. 
Leroy et al. proposed a method without an atlas model [3].   

Scale-based fuzzy connectedness (FC) image 
segmentation [4] is an extension of FC image segmentation 
(FCIS) [5]. Scale-based and original FCIS frameworks have 
been applied to a variety of medical image segmentation 
problems; MR brain segmentation and tissue classification, 
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artery extraction in MR angiography images [6], chest CT 
object identification, etc.  

Fuzzy object model (FOM) is introduced for 
computerized automatic anatomy recognition (AAR), which 
aims to make quantitative radiology (QR) by Udupa et al. [7]. 
FOM presents anatomical knowledge by means of fuzzy 
approach. It assigns fuzzy degree belong to object for each 
point with respect to the position. To demonstrate the 
performance, FOM had been utilized to AAR of 25 organs in 
thoracic CT images.  

Inspired by the FC and FOM, this paper presents a novel 
method for newborn brain MR image segmentation. The 
method extends FOM approach to model knowledge not only 
location but also intensity. And, we show AAR and 
delineation methods based on FC with FOM. Because the 
parenchyma is composed of the white matter (WM) and the 
surrounding cortex, we segment the WM inside the 
parenchyma and then segment the cortex. The proposed 
method is validated in 10 newborn brain MR images using 
leave-one-out cross validation (LOOCV) procedure.  

II. PRELIMINARIES 

A. Newborn subjects and MR image acquisition 
This study recruited 10 newborn subjects whose 

revised-age was between -1 and 2 months. The revised-age is 
an age revised by normal fetal age (i.e., 40 weeks). These 
subjects had no significant cerebral disorders based on clinical 
diagnosis by radiologists and physicians. For each subject, a 
parental informed consent was obtained according to a 
guideline of local Ethics committee in Hyogo College of 
Medicine (Hyogo, JAPAN). 

T2-weighted MR images were acquired using a 3.0 Tesla 
MRI scanner (Achieva 3.0T TX, Philips Medical Systems, 
USA) with a circularly polarized head coil as both the 
transmitter and receiver; TR = 2000 msec; TE = 106-165 
msec. The slice thickness = 1.5 mm; space between slices = 
0.75 mm; the number of sagittal slices depending on the width 
of the subjects' head, the matrix was 320 × 320 and pixel size 
was 0.75 mm by 0.75 mm. 

B. Fuzzy connectedness image segmentation  
FC is the maximum fuzzy affinity among all possible paths 

from seed voxels to a voxel of interest [4][5]. And, fuzzy 
affinity of a path is defined as the minimum fuzzy affinity 
between the neighboring voxels along the path. Fuzzy affinity 
between voxel c and voxel d, is defined by  
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 ( ) ( ) ( )dcdcdcK ,,, ΦΨ= µµµ , (1) 

where  represents the scale-based FC, from voxel c 
to voxel d, ( )dc,Ψµ  estimates scale-based homogeneity 
affinity and ( )dc,Φµ  estimates scale-based object affinity. 
The scale-based homogeneity affinity evaluates the intensity 
homogeneity between neighboring two voxels.  

The scale-based object affinity estimates a similarity to 
seed voxels in terms of intensity. It is calculated by using a 
Gaussian function defined by a mean and a standard deviation 
intensity of the seed voxels. Scale means B-scale, ( )cfB , 
which is the radius of the largest ball centered at c within 
which image intensity is "homogeneous".  

Absolute FCIS delineates a region whose fuzzy 
connectedness from seed voxels is higher than a threshold. It 
requires (1) a seed voxel extraction method, and (2) fuzzy 
affinity definition. The details are described in Ref. [4]. 

III. EXTENDED FUZZY OBJECT MODEL 

This paper extends the concept of FOM [7] with respect to 
image intensity. For distinction, the former is called FSOM, 
and the latter is called FIOM. FIOM represents a fuzzy degree 
belonging to an object with respect to intensity at the position. 
They are built from training data sets in which experts 
delineate the cerebral parenchymal region. We built FSOM of 
foreground region (FG-FSOM) and, FSOM and FIOM of 
cerebral parenchymal region (CP-FSOM and CP-FIOM). 

A.  Definition 
FSOM is a set of fuzzy degrees given for each voxel. 

Consider the aligned training dataset, and the parenchymal 
region is delineated by experts. First, it calculates signed 
distance from the boundary. For each voxel, the mean, µ, and 
standard deviation (SD), σ, of distance in the training dataset 
are transformed into fuzzy degree by a sigmoid function; 
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It takes 0.5 on the surface voxels, the higher value inside the 
object, and the lower value outside the object. 

FIOM is a set of fuzzy membership functions that are 
defined at each voxel. It represents a function of belonging to 
the parenchyma with respect to MR signal value at the 
position. We define the function as a Gaussian function whose 
mean and variance are those of the MR signal values in the 
aligned training datasets where the voxel belongs to 
parenchyma. The MR signal value is normalized by using 
cumulative MR signal histogram.  

B. Building procedure 

FOMs are built by the following steps.  

Step 1. Automated foreground separation 

Step 2. Manual delineation of parenchymal region 
Step 3. Rough alignment of foreground region 
Step 4. Distance transform, and mean and SD calculation 

for each voxel. Transformation of the mean distance 
into fuzzy degree of FG-FSOM. 

Step 5. Fine alignment of FG-FSOM 
Step 6. When the alignment is converged, go to the next 

step. Otherwise, return to step 3. 
Step 7. Build CP-FSOM and CP-FIOM using the 

optimized alignment parameters.  

Alignment is done by using only the FG region, and the 
optimized alignment parameters are applied to the 
parenchymal region. 

To separate FG region, at first, thresholding is applied 
because the FG region has higher intensity than the 
background region such as air. The threshold used is a mean 
intensity of the whole image. Then, it applies opening 
operation and removes small regions. Next, it determines the 
most inferior boundary section, which contains the 
parenchyma. We determine the most inferior boundary 
section by counting FG voxels for each sagittal section and by 
using p-tile method.  

Rough alignment is done by registering origins and by 
adjusting the diagonal length of bounding box. For each 
dataset, origin is set to center of mass of FG region. Linear 
interpolation is used for transformation. Fine alignment is 
done using the present FG-FSOM. It optimizes the alignment 
parameters by using the Nelder-Mead method. Each training 
dataset is aligned optimally with the present FG-FSOM. The 
objective function to be minimized is defined by 

 , (4) 

where  is the set of surface voxels of the object, 
[ ]Tvvv zyxv ,,=  is a voxel in , { }zyxoo ssszy ,,,,,xo=X , 

( ) v⋅XF  is the affine transform of v using a translation vector 

[ ]oo zy ,,xo  and a scaling factor , and ( )xFSOMFG−µ  
is the fuzzy degree at voxel x.  

IV. FULLY AUTOMATED BRAIN SEGMENTATION METHOD 

Automated brain segmentation mainly consists of two 
players. The first player is AAR using FOMs. It roughly finds 
the cerebral parenchymal region by registering FOMs to the 
given MR image. The second player is automated delineation 
of the cerebral parenchymal region. It is performed with FCIS 
using FOMs. Because the parenchymal region consists of WM 
and the surrounding cortex which is gray matter (GM), 
homogeneity affinity between them takes a low value. Thus, 
we segment the inside WM, and then segment the surrounding 
cortex. The procedure is summarized below.  

Step 1. Foreground separation, intensity normalization, 
and FOM alignment using the same procedure of 
building FOMs 

Step 2. FOM based AAR 
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Step 3. WM segmentation using FOM based FCIS 
Step 4. Cortex segmentation using FOM based FCIS 
Step 5. PVE correction and defuzzification 

A. [Step 2] FOM based AAR 
We assign a fuzzy degree for each voxel by using FSOM. 

The fuzzy degree takes a value between 0 and 1, and the 
higher value means the higher degree of belonging to the 
object. By employing both CP-FSOM and CP-FIOM, we can 
assign fuzzy degrees with respect to shape, location, and 
intensity to the success of recognition. Consider a voxel v 
whose MR signal is I(v). The fuzzy degree ( )vFOMCP−µ  of 
belonging to the cerebral parenchyma is estimated by  
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where ( )vFSOMCP−µ  is a fuzzy degree with respect to shape 
given by CP-FSOM, and ( )vFIOMCP−µ  is a fuzzy degree given 
by CP-FIOM. FSOMCPth −  is a parameter between 0 and 1, and 
0.7 was chosen experimentally. 

B. [Step 3] WM segmentation using FOM based FCIS 
The proposed method extracts seed voxels by thresholding 

fuzzy degree belonging to the cerebral parenchyma, 
( )vFOMCP−µ . To assemble with FOM, we extend original fuzzy 

affinity shown in Eq. (1) as  

 ( ) ( ) ( ) ( )dcdcddcK ,,, ΦΨ= µµαµ , (6) 

where ( )dc,Ψµ  is homogeneity affinity defined in Ref. [8]. 
( )dc,Φµ  is object affinity, and is defined by;  

 ( ) ( ) ( )( )dcdc OO µµµ ,min, =Φ . (7) 

 is object feature estimated by using both of seed 
objects and fuzzy object models, and is defined by  

 , (8) 

where ( )xseedµ  is a fuzzy membership function defined by 
Gaussian function whose mean and variance are those of seed 
voxels. It expresses how close MR signal x is to the MR signal 
of seed voxels. Use of Eq. (8) enables us to estimate affinity to 
the cerebral parenchyma based on two aspects, one from the 
given images, and the other from FOMs.  

C. [Step 4] Cortex segmentation using FOM based FCIS 
Because the homogeneity affinity between the inside WM 

and the surrounding cortex is small value, the previous step 
will stop at the boundary between them. This step again 
assigns seed voxels at voxels in the surrounding cortex 
neighboring the boundary.  

The method first segments voxels whose fuzzy 
connectedness is higher than or equal to a threshold, µmin, and 
detects neighboring voxels in which the assigned fuzzy 
connectedness is less than µmin and the object affinity is higher 
than or equal to µmin. Then, FOM based FCIS described in B. 
is applied again using the reassigned seed voxels.  

D. [Step 5] PVE Correction and defuzzification 
To decrease pitfalls of fuzzy degree due to partial volume 

effect, median filter is applied to the resultant fuzzy degree 
map. Next, at the deffuzification step, we extract voxels whose 
fuzzy degree is higher than a threshold, µmin, as the 
parenchymal region.  

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed method was validated in 10 newborn 
subjects shown in Sec. II. Because the method needs training 
dataset, we conducted LOOCV test, which used one data as 
evaluation data, and used the remained data as training data. 
Figure 1 shows experimental results for Subject 1 at an axial 
section. The remained subjects were used for building FOMs. 
Figures (a)-(e) show FG region, and registered FOMs. They 

      
(a) FG region (b) Foreground FSOM (c) Parenchymal FSOM (d) Mean of CP-FIOM (e) SD of CP-FIOM (f) seed voxel 

      
(g) updated affinity  (h) WM fuzzy degree (i) cortex seeds. (j) FC results (k) PVE correction (l) results 

Figure 1. Experimental results for subject 1. In (a), FG region (red shaded) is superimposed on raw MR image. In (b) and (c), 
black-red-yellow-white colors correspond to the low-to-high fuzzy degree. In (d) and (e), the red shaded area is foreground 
region. In (f) and (i) assigned seed voxels are red shaded area. In (f)-(k), the brighter intensity shows the higher fuzzy degree. 
In (o), red shaded area shows the segmented region superimposed on the raw MR image. 

7138



  

show that the FOMs are well-registered to FG region. Figure 
(f) shows the results of AAR and seed voxels for FCIS. The 
higher degrees are assigned to the cerebral parenchyma. 
Figure (g) shows the updated affinity using that from seed 
voxels. Figure (h) shows the fuzzy degrees obtained by 
applying FOM based FCIS. Figure (i) shows the reassigned 
seed voxels on the cortex, (j) shows the obtained fuzzy degree 
map. Figure (k) is the PVE correction result; (l) shows the 
resultant image. And, Figure 2 shows the experimental results 
for every subject. Figure 3 shows volume rendering image of 
the segmented parenchymal region in Subject 1. 

To evaluate the results quantitatively, they were compared 
with the ground truth data, which were binary images carefully 
delineated by experts. The validation indices used were false 
positive volume fraction (FPVF) and false negative volume 
fraction (FNVF). And, geometric-means (G-means) [8] is 
calculated. The lower values show the better segmentation 
accuracy. Table I shows the results. There are relatively some 
false-negative-voxels because of miss-alignment of FOM to 
the evaluating brain.  

VI. CONCLUSION 
We have introduced an FOM based FC approach to 

newborn brain MR image segmentation. The results showed 
the use of FOM is a promised way to segment the parenchymal 
region. However, there are still under-segmentation region 
because of miss alignment of FOMs. In the future, we will 
study FOM based AAR more, and evaluate the applicability of 
the method to the various age groups.  
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(a) subject 1 (31 DO) (b) Subject 2 (-24 DO) (c) Subject 3 (31 DO) (d) Subject 4 (62 DO) (e) Subject 5 (-21 DO) 

     
(f) Subject 6 (31 DO) (g) Subject 7 (31 DO) (h) Subject 8 (31 DO) (g) Subject 9 (31 DO) (g) Subject 10 (31 DO) 

Figure 2. Experimental results by leave-one-out cross validation test.DO means days-old.  

 
Figure 3. Volume rendering of the segmented region. 

TABLE I.  NUMERICAL RESLTS IN 10 SUBJECTS 

 FPVF FNVF G-means 
Subject 1 0.80% 1.69% 1.16% 
Subject 2 0.81% 1.50% 1.10% 
Subject 3 1.06% 5.32% 2.37% 
Subject 4 1.89% 0.74% 1.18% 
Subject 5 1.17% 1.10% 1.13% 
Subject 6 1.02% 0.83% 0.92% 
Subject 7 4.11% 0.37% 1.23% 
Subject 8 1.09% 7.77% 2.91% 
Subject 9 1.22% 1.12% 1.17% 

Subject 10 0.12% 8.59% 1.02% 
mean±SD 1.33±0.97% 2.90±2.81% 1.42±0.60% 
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