
  

  

Abstract— Electroencephalogram (EEG) is often used in 

confirmatory test for brain death determination in clinical 

practice. Because the EEG measuring and monitoring is 

relatively safe and reliable for deep comatose patients, it is 

believed to be valuable for reducing the risk of diagnosis or 

prevent mistaken diagnosis of brain death. In this paper, we 

present EEG complexity analysis and EEG energy analyses for 

the EEG acquisition of 35 adult patients. In EEG complexity 

analysis, we firstly report statistically significant differences of 

quantitative statistics in this clinical study. Next, for the 

patient-wise case study, we develop a dynamical calculating 

entropy method to monitor the symptom change of patients. In 

EEG energy analysis, we firstly accumulate the EEG energy 

from the extracted components that are related to the brain 

activities. Then, we evaluate the energy differences between 

deep comatose patients and brain death. The empirical results 

reported in this paper suggest some promising directions and 

valuable clues for clinical practice. 

I. INTRODUCTION 

       The brain death is defined as the cessation and 
irreversibility of all brain and brain stem functions [1]. Based 
on this definition, the basic clinical criterion has been 
established in most countries. For example, the Japanese 
criterion includes a few major items for brain death 
determination as follows (see Fig. 1). 

• Coma test: motor responses of the limbs to painful stimuli.  

• Pupil test: pupils’ response to light and pupils dilatation.  

• Brainstem reflexes test: e.g., coughing, corneal reflexes, etc.  

• Apnea test: patient’s capability of spontaneous respiration.  

• EEG confirmatory test: no electrical activity occurs above 2    
µV. 

In the standard process of brain death determination, it 
often involves certain risks and takes a long time. For 
example, in order to determine the patient’s spontaneous 
respiration, removing temporarily the respiratory machine is 
necessary during the apnea test [2]. Moreover, in the EEG 
confirmatory test, the observation of electrical activities 
below 2 µV, the recordings should at least 30 minutes, and 
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repeated the same recording after 6 hours. Therefore, in order 
to reduce the risk and to save the precious time for the 
medical care in clinical practice, it is desirable to develop a 
practical yet safe and reliable diagnosis system in the brain 
death determination. 
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Figure 1.  EEG diagnosis system in the brain death determinaton.  

We first introduce an EEG diagnosis system into the 
standard brain death determination process as shown in Fig. 1 
[3]. In Fig. 1, after the coma test, pupils test, and brainstem 
reflexes test conducted for a patient, the EEG diagnosis 
system comes in at the bedside of patient in the Intensive 
Care Unit (ICU). The purpose of the EEG diagnosis is to 
explore advanced signal processing tools to evaluate whether 
any brain wave activity occurs in the patient’s brain. If the 
decision is positive (i.e., indicating the presence of brain 
activities), it suggests to side step the further tests of brain 
death, and go directly to spend more time on the patient’s 
medical care. On the contrary, if the result of EEG diagnosis 
is negative, the apnea test and EEG confirmatory test will be 
executed afterwards as in the standard brain death 
determination procedure. It is worth noting that the EEG 
preliminary diagnosis is not a substitute of the standard 
process of brain death determination. Instead, it is our belief 
that if the EEG diagnosis is reliable and its results are 
significant, it would provide a simple and risk-free diagnosis 
tool in the ICU of the hospital without jeopardizing the 
patient’s life. 

The EEG diagnosis system (Fig. 1) includes a portable 
EEG acquisition device and the EEG-oriented signal 
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processing tools such as noise reduction, source separation, 
feature extraction, complexity and energy analysis. The noise 
reduction and the source separation, followed by the Fourier 
and time-frequency analysis tools have been developed in [4, 
5]. This paper will focus on EEG complexity analysis and 
EEG energy analyses to evaluate the differences between 
deep comatose patients and brain deaths. 

II. EEG DATA RECORDING  

The EEG measurements were recorded at the bedside of 
patients in a university hospital ICU (Shanghai, China), 
where the level of environmental noise could be fairly high. 
The EEG recording machine was a portable NeuroScan 
ESI-32 system (El Paso, TX). In the system, a total of nine 
electrodes were placed on the forehead of the patient lying on 
the bed, which mainly cover the non- or least hairy area of 
the scalp. Specifically, six channels are placed at Fp1, Fp2, 
F3, F4, C3, C4, according to the standard 10/20 system; two 
electrodes that connect the two ears are used as reference, 
namely (A1+A2)/2; the addition channel, GND, serves as the 
ground (Fig. 2). The sampling rate of EEG was 1 kHz, and 
the resistances of electrodes were set under 8 k!. During the 
clinical measurements, no gel or any other conductive pastes 
was used during all sessions of EEG recording. 

 

Figure 2.  The layout of electrodes. 

     35 adult patients have been examined using EEG from 
June 2004 to March 2006, with age range from 17 to 85 years 
old. All patients were in deep comatose or brain death before 
the EEG recordings. Patients were all lying down in the bed 
with eyes closed during the EEG measurements. 
Correspondingly, no ocular or muscle artifacts were observed. 
However, sometimes the heart beat rhythm can be observed 
from specific patients. In China, there was still no legal 
regulation or instructions regarding to the brain death 
diagnosis at the time of data collection. In our case, the 
medical classification between comatose and brain death was 
pre-determined by two experienced physicians based on 
continuous monitoring and several typical tests. The EEG 
recordings were supervised by one physician and operated by 
either medical doctor or medical staff. In some cases the 
determination results were further confirmed later on based 
on extra evidence. 

   The experimental protocol was approved by the local ethics 
committee of the hospital, and all recorded data were used 

with permission of patients’ family. Because the health 
conditions of patients varied, each patient might have 
different number of recorded data sessions at the same or 
different day. Finally, a total of 64 sessions’ recordings from 
35 patients were used in this paper. 

III. EEG COMPLEXITY ANALYSIS FOR PATIENTS 

      In the literature, many complexity measures have been 

proposed or developed for characterizing neurophysiological 

signals (e.g., [6-12]). In our complexity analysis, four types 

of complexity measures are under investigation: 

1) The approximate entropy (ApEn) [10], which is a quantity 

that measures the regularity or predictability of a random 

signal or time series.  

2) The time delay-embedded normalized singular spectrum 

entropy (NSSE) [11], which is a complexity measure arisen 

from calculating the singular spectrum of a delay-embedded 

time series. 

3) The C0 complexity [8], which is a complexity measure 

based on simple Fourier analysis.  
4) The "-exponent based on detrended fluctuation analysis 
(DFA) [12], which estimates the fractal scaling exponent. 
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Figure 3.  Box plot statistics of four complexity analysis for 6 channels 

between comatose group and brain death group. The maximum, minimum 
and average values are displayed. 

Notably, all these measures are strictly invariant to the 
scaling of the signal (hence independent of the signal’s 
power). The parameter setup in our experiment is selected 
upon literature recommendation and tested by trial and error. 
In Fig.3, as a quantitative study, we find the statistical 
differences between the comatose patient group and brain 
death group by used four EEG complexity analysis methods 
within the total of 35 patients. 

      In the patient-wise case study, we will focus on the 
development of a dynamic ApEn algorithm for observing the 
symptom variation of each individual patient.  

      The standard ApEn algorithm [10] is computed by  

���������� ApEn(N,m, r) = !m.r
!!m+1,r

,             (1) 

where N is the length of a time series, m is the length of a 

sample vectors, and  !  is a natural logarithmic average over 

a sample vector. The index r is the so-called tolerance 
parameter.�  
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By introducing a time window with width t' (see Fig. 4), 
we can compute ApEn for i-th window by 

ApEn(t',m',r)i = (Am',r - (Am'+l,r' (2) 

where i = 1, 2, · · ·, N Moving the window with a steady 

sample, we can obtain a vector of ApEn as 

DApEn = [ ApEn(t',m',r)l'· · ·,ApEn(t',m',r)N]. (3) 

Consequently, when computing ApEn, we can only obtain 
a scalar, however, by computing DApEn, we can obtain a 
vector in which it involves dynamic complexity information. 
Fp1 r·-r·-·-·- ·- ·- ·1·-·1 r·-'-·-·-··-·-·.;,., 

I - I 
Fp2 ·• • 

I I 
F3 ·i i 
F4 ·j • 
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C4 i . t' i . :r=· !--i- . ---t'--

'-········-

Figure 4. The diagram of dynamic complexity analysis, moving time 
window with width t'. 
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Due to space constraint, let's present one specific patient 
case (the consciousness state changes from deep comatose to 
brain death). The patient was a 17-year-old female with the 
virus encephalitis. This patient suffered from the difficulty of 
breathing, and the respiratory machine was used in the ICU 
right since her admittance to the hospital on October 14, 2005. 
On October 18, 2005, the patient was in a deep comatose 
state with dilated pupils, but was found to have a very weak 
visual response. On the same day, the EEG was recorded 
about 3 minutes at the patient's bedside. Next day, on 
October 19, 2005, the patient further suffered from apnea, 
and her pupils lost the light response. Two clinical doctors 
preliminarily diagnosed the patient as a brain death. On the 
same day, the EEG was recorded in 4 minutes. 

In total, the EEG recordings from 2 days have the 
durations about 7 minutes. Here, we apply the developed 
DApEn presented in Eqs. (2), (3) to 2 days recorded EEG 
signals, the results are obtained in Fig. 5. 
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Figure 5. Dynamic complexity analysis (DApEn) for a patient with two 
consciousness states. The ApEn value of comatose state was close to zero, 
and brain death was close to one. 

As shown in the Fig, 5, we can clearly observe a mode 
shift (transition from deep comatose to brain death) between 
these two days. This data analysis result is completely 
identical to the result given by clinical doctors. From this 
result we know that the live brain with rhythm activities have 
a high regularity, it produces a low ApEn value. Contrarily, a 

random signal such as noise (without brain activities) with a 
low regularity, it produces a greater ApEn value. 

IV. EEG ENERGY ANALYSIS FOR PATIENTS 

Let us firstly define the EEG energy using the power 
spectrum within the frequency band multiply by recorded 
EEG time. Specially, when the recorded EEG time is equal to 
one second, the EEG energy is equal to the power spectrum. 
Since the energy or the power of spontaneous activities in a 
live brain is usually higher than that of non-activity 
components, therefore, we can use the EEG energy analysis 
to evaluate the energy (or the power spectrum) of the 
extracted activities differences between comatose patients 
and brain deaths. 

The energy of brain activities can be computed by using 
empirical mode decomposition (EMD) proposed in [13]. This 
method is used to decompose the data into several oscillatory 
components called intrinsic mode function (IMF). The IMF 
components are usually expressed as the standard Hilbert 
transforms, from which the instantaneous frequencies can be 
calculated. The local energy and the instantaneous frequency 
derived from the IMF components through the Hilbert 
transform can be given a full energy frequency time 
distribution of the data. Moreover, in order to extract brain 
activity features from multi-channel EEG simultaneously, we 
can use recently developed multivariate empirical mode 
decomposition (MEMD) method [14]. 

Here, we firstly demonstrate an example applying 
MEMD to a patient's EEG. The patient is an 18-year-old 
male with a primary cerebral disease, who was admitted to 
the hospital on May 20, 2004. After a month hospitalization, 
on June 22, 2004, the patient lost his consciousness and 
remained in a deep coma state. On the EEG examining day, 
his pupils were dilated, and the respiratory machine was used. 
The patient was completely unresponsive to external visual, 
auditory, and tactile stimuli, and was incapable of any 
communication. The symptom of patient was very similar to 
a brain death case. Applying MEMD to this patients' EEG, 
we can obtain the results shown in Fig. 6. 
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Figure 6. The EEG energy analysis for a comatose patient. Top row (X1 to 
X6) were the recorded EEG in one second, 11 to 19 are decomposed 9 IMF 

components, and r is a residual component. The estimated X
1 
to X

6 
are brain 

activities in time domain, and bottom row are the estimated brain activities 
in frequency domain. 
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      As seeing from Fig. 6, the recorded 6 channels EEG are 
decomposed into 9 IMF components (I1 to I9) and a residual 
component (r) from high frequency to low frequency 
simultaneously by MEMD. Since the brain activity of the 
consciousness lost patient are usually below 40 Hz, therefore, 
we can remove the high frequency IMF components I1 to I3  
(refer to electrical interference or other noise from 
environment that contains in the recorded EEG), and a 
residual component (r). We then synthetize the suitable 
components from I4 to I9 to the estimated components (the 
denoised components), and transfer them to frequency 
domain by fast Fourier transform (FFT). Finally, we can 
compute the power spectrum of each decomposed component. 
In this case, the total of the power spectrum (EEG energy) is 
about 2800 (see Fig. 7, C1 means the first comatose patient).  
This result of EEG energy analysis indicated that the patient 
still had physiological brain activity. 

 Applying the same EEG energy analysis method to the 
total of 35 patients’ EEG, we obtained the EEG energy 
patterns shown in Fig. 7.  
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Figure 7.  The EEG energy brain distribution of 35 patients. C1 to C19 

are 19 comatose patients, and D20 to D35 are 16 brain deaths. D13 is the 

same patient as C13. 

As can be seen in Fig. 7, among 19 comatose patients  (C1 
to C19), the maximum value of power spectrum goes up over 
6000, and their averaged value is above 2000. It illustrates 
that the comatose patients’ brain activities are exist. Contrary 
to this, in the case of 16 brain deaths (D20 to D35), there is no 
spectral power over 1000. That implied the absence of brain 
activities in brain deaths except for some kinds of noise.  C13 
and D13 is the same patient who has two consciousness states 
changes from comatose to brain death (the same result that 
we already obtained by using the EEG complexity analysis 
shown in Fig. 5.)  Based on the experimental results, we can 
conclude that the EEG energy analysis method can be used to 
evaluate the comatose patient and brain death in the clinical 
practice. 

V. CONCLUSION 

In this paper, we have proposed EEG complexity analysis 

and EEG energy analyses methods in the EEG diagnosis 

system for the determination of brain death. In the EEG 

complexity analysis, we found that the statistically 

significant differences between the group of comatose 

patient and brain death. Moreover, the developed dynamic 

calculating entropy method can be used to monitor the 

symptom change of patients. In EEG energy analysis, we 

can evaluate the EEG energy differences between deep 

comatose patients and brain death. In terms of the clinical 

utility, we believe that the real-field analysis of the EEG 

recordings would provide the medical doctor with valuable 

cues of the ongoing activities of the brain. Hence, our 

proposed method can be potentially used as a diagnostic and 

prognostic tool in clinical practice. 

   In the future study, we are planning to collect more 

real-field EEG data for more in-depth data analysis such as 

the low-frequency component decomposition, and pattern 

classification. In conclusion, we believe that the developed 

tools for EEG analysis would shed a light on the real-time 

medical diagnosis in clinical practice, and it might open a 

challenging research direction in biomedical engineering. 
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