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Abstract— Thermal infrared imaging has been shown to be
useful for diagnosing breast cancer, since it is able to detect
small tumors and hence can lead to earlier diagnosis. In
this paper, we present a computer-aided diagnosis approach
for analysing breast thermograms. We extract image features
that describe bilateral differences of the breast regions in the
thermogram, and then feed these features to an ensemble
classifier. For the classification, we present an extension to the
Under-Sampling Balanced Ensemble (USBE) algorithm. USBE
addresses the problem of imbalanced class distribution that
is common in medical decision making by training different
classifiers on different subspaces, where each subspace is
created so as to resemble a balanced classification problem. To
combine the individual classifiers, we use a neural fuser based
on discriminants and apply a classifier selection procedure
based on a pairwise double-fault diversity measure to discard
irrelevant and similar classifiers. We demonstrate that our
approach works well, and that it statistically outperforms
various other ensemble approaches including the original USBE
algorithm.

I. INTRODUCTION

Thermography uses a camera with sensitivities in the

thermal infrared to capture the temperature distribution of the

human body or parts thereof. In contrast to other modalities

such as mammography, it is a non-invasive, non-contact,

passive and radiation-free technique. It is well known that the

radiance from human skin is an exponential function of the

surface temperature which in turn is influenced by the level

of blood perfusion in the skin. Thermal imaging is hence well

suited to pick up changes in blood perfusion which might

occur due to inflammation, angiogenesis or other causes [1].

Thermography has also been shown to be well suited for the

task of detecting breast cancer [2], [3]. Here, thermography

has advantages in particular when the tumor is in its early

stages or in dense tissue. Early detection is crucial as it

provides significantly higher chances of survival [4] and in

this respect infrared imaging can outperform the standard

method of mammography. While mammography can detect

tumors only once they exceed a certain size, even small

tumors can be identified using thermal infrared imaging due

to the high metabolic activity of cancer cells which leads to

an increase in local temperature that can be picked up in the

infrared [5].

In this paper, we present a computer-aided diagnosis ap-

proach for analysing breast thermograms. For this, we extract
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a set of image features from the thermograms that describe

bilateral differences between the two breast regions (since

the presence of tumors will typically lead to asymmetries

between the temperature distributions of the two sides).

These features are then utilised in a pattern classification

stage for which we employ an ensemble classifier.

In particular, we present Prunded Under-Sampling Bal-

anced Ensemble (PUSBE), a classification method based

on our earlier work in [6], [7] for effective classification

of breast thermogram features. Our approach addresses the

problem of class imbalance that is frequently encountered

in medical datasets due to the relatively low number of

malignant cases compared to benign ones. We achieve this by

constructing subspaces from balanced subsets of the training

data and then train a separate classifier for each generated

subspace. To avoid using similar predictors we then perform

a classifier selection and pruning stage to discard redundant

base classifiers. For this, we utilise a pairwise double-

fault diversity measure to ensure that classifiers in the pool

are mutually complementary. We combine the remaining

classifiers using a trained fusion algorithm based on discrim-

inants and implemented as a neural network. Experimental

results obtained on a large dataset of breast thermograms

demonstrate that our approach achieves high classification

performance without sacrificing sensitivity while statistically

outperforming other ensemble classification approaches.

II. BREAST THERMOGRAM IMAGE FEATURES

As has been shown, an effective approach to detect breast

cancer based on thermograms is to study the symmetry

between the left and right breast regions [8]. In the case of

cancer presence, the tumor will recruit blood vessels resulting

in hot spots and a change in vascular pattern, and hence

an asymmetry between the temperature distributions of the

two breasts. On the other hand, symmetry typically identifies

healthy subjects.

We follow this approach and extract image features that

describe bilateral differences between the areas of the left

and right breasts extracted from frontal view thermograms.

We employ the same image features that were used in [9],

namely:

• Basic statistical features: mean, standard deviation, me-

dian, 90-percentile;

• Moment features: centre of gravity, distance between

moment centre and geometrical centre;

• Histogram features: cross-correlation between his-

tograms; maximum, number of non-empty bins, number
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of zero-crossings, energy and difference of positive and

negative parts of difference histogram;

• Cross co-occurrence matrix [10] features: homogeneity,

energy, contrast, symmetry and the first 4 moments of

the matrix;

• Mutual information between the two temperature distri-

butions;

• Fourier spectrum features: the difference maximum and

distance of this maximum from the centre.

Each breast thermogram is thus described by 4 basic sta-

tistical features, 4 moment features, 8 histogram features,

8 cross co-occurrence features, mutual information and 2

Fourier descriptors. We further apply a Laplacian filter to

enhance the contrast and calculate another subset of features

(the 8 cross co-occurrence features together with mutual

information and the 2 Fourier descriptors) from the resulting

images, and consequently end up with a total of 38 features

which describe the asymmetry between the two sides and

which form the basis for the following pattern classification

stage.

III. ENSEMBLE CLASSIFICATION

Assume that we have L classifiers Ψ(1), Ψ(2), ..., Ψ(L).
For a given object x ∈ X , each individual classifier decides

for class i ∈ M = {1, ... ,M} based on the values

of discriminants. Let F (l) (i, x) denote a function that is

assigned to class i for a given value of x, and that is used

by the l-th classifier Ψ(l). The combined classifier Ψ makes

a decision based on [11]

Ψ(x) = i if F̂ (i, x) = max F̂ (k, x)
k∈M

, (1)

where

F̂ (i, x) =

L
∑

l=1

w(l)(i)F (l) (i, x) and

L
∑

i=1

w(l)(i) = 1. (2)

The weights can be set dependent on the classifier and

class number: weight w(l)(i) is assigned to the l-th classifier

and the i-th class, and given classifier weights assigned to

different classes may differ.

IV. IMBALANCED CLASSIFICATION

A data set is imbalanced if the classification categories

are not (approximately) equally represented. Especially in

medical decision making, data sets are often predominantly

composed of “normal” or benign examples with only a small

percentage of “abnormal” or malignant cases.

While the performance and quality of classification algo-

rithms is usually evaluated using predictive accuracy, this

is not appropriate when the data is imbalanced as dispro-

portions in the number of objects between the classes may

lead to severe deterioration of the classification accuracy.

Consequently, the decision boundary may get biased towards

the majority class, leading to poor recognition of the minority

class and hence poor sensitivity.

Various approaches have been proposed to address this

problem. Among the most popular ones are oversam-

pling [12], which introduces artificial objects into the dataset

to counter the unfavourable sample distribution, and cost-

sensitive classification [13] where a cost matrix is defined

to associate misclassification with costs and classification is

tuned to minimise overall costs.

V. PRUNED UNDER-SAMPLING BALANCED ENSEMBLE

In our approach, we perform neither oversampling (as it

might lead to a class distribution shift) nor cost-sensitive

classification (as performance relies heavily on the correct

specification of the cost matrix). Our method is based on

our earlier work in [6], [7] where we have presented Under-

Sampling Balanced Ensemble (USBE) as an effective method

for imbalanced classification. USBE is based on the idea of

object space partitioning where each classifier is trained on

a different subspace and constructed so as to counter the

original imbalance in the dataset. In this paper, we add a

classifier selection step to discard similar classifiers which

do not contribute to the ensemble under consideration but

increase its overall complexity.

Our Pruned USBE (PUSBE) approach proceeds in four

main steps:

1) Creation of a number of balanced subspaces consisting

of minority class and under-sampled majority class

objects.

2) Construction of a pool of classifiers by training a

single classifier on each of the subspaces. Optionally,

a feature selection algorithm [14] can be employed

which is applied independently for each of the sub-

spaces/classifiers.

3) Diversity-based pruning of a pool of classifiers to select

complementary models for the committee.

4) Fusion of outputs of the remaining classifiers.

In the following, we describe these stages in more detail.

A. Space partitioning

For imbalanced datasets, typically the majority class is

identified well (as it has sufficient training instances to learn

from) while classification for the minority class is often poor.

In USBE this problem is addressed based on object space

division and proceeds in two steps:

1) Creation of a number of subspaces.

2) Construction of a pool of classifiers ΠΨ =
{Ψ1,Ψ2, ...,ΨL} by training single classifiers on each

of the subspaces.

Space partitioning is employed to balance the unfavourable

class distribution using a random undersampling method.

Each of the newly created subspaces contains a smaller

number of objects, randomly drawn from the dataset so that

the number of objects in each of the subspaces is equal for

both classes.

B. Feature selection

Feature selection is employed independently for each of

the chosen subspaces. Therefore, in each of the subspaces

the derived feature subsets may vary, leading to an increased

overall diversity of the pool of classifiers, and consequently
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to a better ensemble. We employ the fast correlation-

based feature filter (FCBF) [14], due to its typically good

performance and low computational complexity. In FCBF,

the relations between features-classes and between pairs of

features are considered. The algorithm proceeds at two levels.

First, a ranking algorithm using the symmetric uncertainty

coefficient (SUC) index is used to estimate class-feature

relevance, and a threshold coefficient established to select

predominant features. In the second part, features that are

redundant to the predominant features are removed.

C. Ensemble pruning

Different base classifiers will have different areas of com-

petence and hence may provide different contributions to the

committee. Therefore, careful classifier selection should be

conducted in order to choose the most valuable committee

members. There are several ways how such an ensemble

pruning procedure can be implemented. One of the most

popular criteria is to employ an ensemble diversity measure

to select classifiers that are as different as possible from

each other. This is motivated by the fact, that adding similar

classifiers to the committee does not improve its quality but

only increases its complexity. On the other hand, diverse

models might be mutually supplementary and hence allow

to exploit different areas of competence.

In our PUSBE approach, we employ a pairwise double-

fault diversity measure [15] to select classifiers and prune

the ensemble. The diversity measure is based on the idea

that it is more important to know when simultaneous mis-

classifications occur than when both classifiers are correct.

This is also well aligned with the problem of imbalanced

classification, since the main priority here is to minimise the

number of misclassifications of the minority class.

Given two base classifiers hi and hj let n(a, b) denote

the number of training objects for which the output of these

classifiers is a and b respectively. The double-fault diversity

measure can then be calculated as

DIVDF (hi, hj) =
n(−1,−1)

n(1, 1) + n(−1, 1) + n(1,−1) + n(−1, 1)
.

(3)

Diversity for an ensemble of L base classifiers is then

calculated by averaging the measure over all classifier pairs

in the ensemble

DIVDF (Ψ) =
2

NL(L− 1)

L
∑

j=1

L
∑

k=j+1

nj,k(−1,−1), (4)

where N is the number of training samples. The established

diversity measure is in the interval [0, 1], where 1 corre-

sponds to a set of identical classifiers and 0 to the highest

possible diversity respectively.

D. Classifier fusion

Classifier fusion is an important aspect of classifier en-

sembles, and the choice of fusion method, which is respon-

sible for the collective decision making process, is hence

crucial [16]. In our approach, we use a neural network as

a trained fuser for the classifier ensemble [11]. For this

Fig. 1. Classifier fuser implemented as a one-layer neural network.

approach, all simple classifiers must give decisions based

on the values of discriminant functions.

Based on a training process, the fuser needs to identify

W = {W1,W2, . . . ,WL} which defines the weights as-

signed to each classifier and each of the M classes

Wa =
[

w(l) (1) , w(l) (2) , . . . , w(l) (M)
]

T . (5)

In PUSBE, we employ a neural network as a trained clas-

sifier fusion approach, illustrated in Figure 1. One perceptron

fuser is constructed for each of the classes under consider-

ation. Once trained (we employ the Quickprop algorithm in

our implementation), the input weights established during the

learning process are then the weights assigned to each of the

base classifiers.

VI. EXPERIMENTAL RESULTS

For evaluation, we used a dataset of 146 thermograms (the

same dataset used in [10], [9], [6], [7]) of which 29 cases

have been confirmed as malignant whereas the other 117

cases were benign, and which hence clearly represents an

imbalanced classification problem. For all thermograms, we

extracted the 38 features described in Section II.

As base classifier, we employed a support vector machine

(SVM) [17] with a Gaussian RBF kernel, and performed

classifier tuning [18] to obtain optimal parameters (which

were σ = 0.1 and C = 10). We then performed classification

using the presented PUSBE approach. Classifier selection

was achieved by an exhaustive search over all possible per-

mutations of committee members to minimise the diversity

measure function. The initial ensemble consisted of 7–9

individual classifiers (depending on the fold of the employed

cross validation) of which 3–6 remained after the pruning

stage.

For comparison, we also performed classification us-

ing several state-of-the-art ensembles dedicated to imbal-

anced classification, namely SMOTEBagging [19], SMOTE-

Boost [20], IIVotes [21] and EasyEnsemble [22], as well as

the original USBE approach from [7]. For all models we used

the same base classifier models as employed for PUSBE for

an objective comparison.

Results, based on a combined 5 x 2 CV F test of statistical

significance [23], are given in Table I for all classifier ensem-
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TABLE I

CLASSIFICATION RESULTS.

classifier sensitivity specificity accuracy sensitivity statistically better than

SMOTEBagging 77.35 90.50 87.89 -
SMOTEBoost 79.03 91.00 88.62 SMOTEBagging
IIVotes 79.56 91.89 89.44 SMOTEBagging
EasyEnsemble 80.02 90.17 88.22 SMOTEBagging, SMOTEBoost

USBE 80.35 90.15 88.21 SMOTEBagging, SMOTEBoost, IIVotes
PUSBE 81.37 90.59 88.76 ALL OTHER METHODS

bles. For each approach, we report sensitivity (i.e. probability

that a case identified as malignant is indeed malignant),

specificity (i.e. probability that a case identified as benign

is indeed benign) and overall classification accuracy (i.e.

percentage of correctly classified patterns), and also state

compared to which other approaches a method was found to

work statistically better.

From Table I we can see that while our proposed PUSBE

method does not outperform the other ensembles in terms of

overall classification accuracy, clearly improved sensitivity

results are achieved. The achieved sensitivity is 81.37%, the

highest of all approaches, which coupled with a specificity

of 90.59% gives very good classification performance on this

challenging dataset. In fact, PUSBE gives statistically better

sensitivity compared to all other approaches including the

original USBE algorithm, which confirms that our approach

is able to correctly identify the more important (i.e. malig-

nant) cases well.

VII. CONCLUSIONS

In this paper, we have presented an effective approach

to computer-aided diagnosis of breast thermograms. Based

on a set of asymmetry features extracted from the images,

we employ a multiple classifier system that is able to

appropriately deal with imbalanced datasets. In particular,

we train the base classifiers on different object subspaces

where in each subspace a balance between the classes is

maintained. Redundant classifiers are then removed based on

a pairwise double-fault diversity measure, and the remaining

classifiers combined using a neural network fuser. Our ap-

proach is shown to provide very good classification results

on a challenging dataset of about 150 thermograms, and is

further demonstrated to outperform various other state-of-

the-art ensemble classification methods.
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