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Abstract— We provide a method for estimating brain
metabolic state based on a reduced-order model of EEG burst
suppression. The model, derived from previously suggested
biophysical mechanisms of burst suppression, describes impor-
tant electrophysiological features and provides a direct link
to cerebral metabolic rate. We design and fit the estimation
method from EEG recordings of burst suppression from a
neurological intensive care unit and test it on real and synthetic
data.

I. INTRODUCTION

Burst suppression is an electroencephalographic (EEG)

pattern in which periods of high voltage activity (bursts)

alternate with periods of isoelectric quiescence (suppression)

(see Figure 1). It is characteristic of a profoundly inacti-

vated brain and occurs in conditions such as deep general

anesthesia [1], hypothermia [2] and coma [3]. That these

different conditions lead to seemingly similar brain activity

suggests that burst suppression is the result of a fundamental,

low-order process that is prominent when higher-level brain

activity is depressed.

The main features of burst suppression have been well de-

scribed [4], [5], [6]. Classically, burst suppression is thought

to be a global state where bursts begin and end nearly

simultaneously across the entire scalp. It is different from

typical faster EEG oscillatory patterns, in that suppression

epochs can be very irregular and may last several seconds.

Importantly, burst suppression is not a homogeneous state

but, instead, varies continuously as a function of brain inacti-

vation. As the brain becomes progressively more inactivated,

the amount of suppression, relative to the amount of burst,

increases. This variation has been traditionally quantified

with the burst suppression ratio [6], which measures the

amount of suppression in a sliding window of EEG data.

Recent research on the burst suppression probability [7]
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Fig. 1. Example of burst suppression. (A) Continuous EEG activity, (B)
Burst suppression

(BSP) has provided a statistically rigorous, and window-free,

approach to estimating the burst suppression state.

Here, we introduce a method for estimating not simply

burst suppression, but the underlying brain metabolic state.

Our method is based on a recent nonlinear, biophysical

model [5], which attributes the parametric increase in sup-

pression duration with brain inactivation to decreases in brain

metabolism.

We begin by characterizing the relationship between brain

metabolic state and observable EEG features, namely the

lengths and variability of bursts and suppressions. We then

introduce and fit a reduced state-space model of burst

suppression to recordings from neurological intensive care

unit (ICU) patients. From this model, we demonstrate the

inference of the underlying metabolic state.

The remainder of this paper is organized as follows.

Section II provides a brief background on the biophysical

mechanisms of burst suppression and the resulting models.

Section III introduces the reduced state-space model and

methods for metabolic state inference. Brief conclusions are

formulated in Section IV.

II. BACKGROUND

A. Neurophysiology of Burst Suppression

Although many features of burst suppression have been

described, the neurophysiological mechanisms that are re-

sponsible for creating it are less well understood. In the

context of general anesthesia, the early work by Steriade [8]

helped establish certain neural correlates of burst suppres-

sion, describing the participation of different cell types in

bursts and suppressions, though an underlying mechanism

was not suggested. Other studies [9] have suggested that

burst suppression involves enhanced excitability in cortical

networks, and have implicated fluctuations in calcium as

related to the alternations between bursts and suppressions.

B. Existing Models of Burst Suppression

A unifying biophysical model for burst suppression – one

that accounts for its characteristics, and also its range of

etiologies – was recently proposed [5]. The key insight of
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Fig. 2. ATP-based mechanism for burst suppression. ATP is depleted
through the course of each burst, leading to suppression. During suppression
ATP gradually recovers until, eventually, activity begins again

the model is that each of the conditions associated with burst

suppression (general anesthesia, hypoxic/ischemic coma, hy-

pothermia) is associated with decreased cerebral metabolic

rate of oxygen (CMRO). The model links this decrease in

CMRO to deficiencies in ATP (adenosine triphosphate, the

energetic substrate for neuronal activity) production in corti-

cal networks (see Figure 2). The termination of each burst is

a reflection of ATP consumption due to the neuronal activity

underlying fast EEG oscillations, whereas suppressions are

governed by the slow dynamics of ATP regeneration.

This model provided an explanation for why three cardinal

features of burst suppression – the spatial synchrony of bursts

onsets across the scalp, the increase in suppression durations

with increasing brain inactivation, and the long timescales

of suppressions – can arise across its disparate etiologies.

The present paper is intended to provide a simplification

of the model in [5], and simultaneously, to describe a

fourth cardinal feature that was not previously explored,

namely the variability of burst lengths at different burst

suppression levels. This, in turn, enables the estimation of

brain metabolism (CMRO) from EEG recordings.

III. PROBABILISTIC MODELING AND

ESTIMATION OF BURST SUPPRESSION

A. Simplified Burst Suppression Model

Based on [5], we present a reduced order state-space

model for burst suppression governed by the following:

ȧ = kr (1− a)− kcu (a) . (1)

Here, a(t) is the concentration of local ATP in a cortical

region, kc is the rate of ATP consumption during each burst,

kr is the rate of ATP regeneration during each suppression,

and u(a) indicates whether burst activity can or cannot be

sustained. We select

u (a) =

{

1 ȧ > 0 and 0 ≤ a < α
0 otherwise,

(2)

meaning that burst activity can only be initiated when ATP

levels increase beyond the threshold α.

By fixing the parameter kc = 1, (1) can be rewritten as

ȧ = x (1− a)− u (a) , (3)

where x, a value from 0 to 1, is the brain metabolic state.

A value of x = 0 corresponds to full CMRO (when ATP

regeneration equals consumption), while x = 1 is complete

metabolic depression.

Fig. 3. Example of model output for different values of metabolic state.
(A) x = 0.8, (B) x = 0.1. Simulated EEG signal shown for schematic
purposes only.

Figure 3 illustrates the output of the model for two dif-

ferent values of x. When x is moderate, the model produces

epochs of burst and suppression that are commensurate in

length. When x is reduced to a low value, the bursts are much

shorter (due to more rapid consumption) and the suppressions

are longer (due to slower regeneration).

The model (1) offers increased analytical tractability as

compared to the full nonlinear model in [5]. In particular,

we can derive explicit expressions for burst and suppression

lengths (LS and LB) at different metabolic state levels as:

LS (x) = − log ᾱ/x

LB (x) = − log
(

1−x

1−ᾱx

)

/x,
(4)

where

ᾱ = 1− α. (5)

The burst suppression state itself can then be quantified in

terms of the suppression lengths, relative to the total length

of a burst-suppression cycle, specifically:

BSLevel (x) =
LS(x)

LS (x) + LB(x)
=

log ᾱ

log ᾱ+ log
(

1−x

1−ᾱx

)

(6)

Note that in practice, (6) can be estimated using the burst

suppression probability (BSP) [7] algorithm. Through (4)

and (6), we can estimate x based on measurement of burst

suppression and calculation of burst and suppression lengths

from the EEG.

B. Automatic EEG Segmentation

In order to infer the metabolic state in our model, we

must first establish a method to segment EEG recordings into
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Fig. 4. Examples of ICU burst suppression with automatic segmentation.
Segmented bursts (i.e., nt = 0) are shown in red, while suppressions
(i.e., nt = 1) are blue. (A,B) Patterns containing epileptiform spikes,
(C,D) Patterns with distinct bursts and suppressions, (E,F) Patterns with
less distinct bursts

bursts and suppressions. That is, if xt, t = 0, 1, 2, ... is the

sampled EEG signal, then we must obtain a corresponding

binary series nt where nt = 1 if xt is in a suppression and

0 if it is in a burst.

While several algorithms have been developed for this

purpose [10], [11], we choose to use adaptive variance

thresholding as follows:

ȳt = γxt + (1− γ)ȳt−1 (7)

s2t = γ(xt − ȳt)
2 + (1− γ)s2t−1 (8)

nt =

{

1 s2t < v
2

threshold

0 otherwise,
(9)

where γ is a tunable filter parameter and v2
thresold

is an

amplitude threshold. We have applied this method to a variety

of EEG recordings of burst suppression from the neurological

ICU [12] and, as illustrated in Figure 4, it can reliably

segment the EEG into bursts and suppressions.

From the binary signal nt it is straightforward to obtain

empirical lengths of bursts and suppression (simply, the

lengths of consecutive 0s or 1s), facilitating estimation of

metabolic state.

C. Inference of Metabolic State

In order to estimate the metabolic state x as a function

of time, and to account for anticipated stochastic effects in

burst and suppression lengths, we introduce a probabilistic

model as follows:

xt = min (max (xt−1 + vt, 0) , 1) , vt ∼ N (0, σ) (10)

This model is a rectified Gaussian random walk and, if σ
is suitably small, implies that x does not exhibit large and

sudden temporal changes.

We will, furthermore, make a Markovian assumption that

p (xt|x0, x1, ..., xt−1) = p (xt|xt−1) (11)

and, in particular, that

p (nt|H (n,L, x)) = p (nt|nt−1, Lt−1, xt−1) , (12)

where Li denotes the length of the ith event (either a burst

or suppression) and H(·) denotes the entire history.

What remains is to define the probabilities for continua-

tion:
p (nt = 1|nt−1 = 1, Lt−1, xt−1)
p (nt = 0|nt−1 = 0, Lt−1, xt−1)

(13)

and switching:

p (nt = 1|nt−1 = 0, Lt−1, xt−1)
p (nt = 0|nt−1 = 1, Lt−1, xt−1)

(14)

Based on the characterization from (4) and (6), we choose to

model these probabilities using the Weibull hazard function

h (t;λ, θ) =
θ

λ

(

t

λ

)θ−1

, (15)

and its cumulative distribution function (CDF)

F (t;λ, θ) = 1− exp

(

−
t

λ

)θ

. (16)

Note that (15) and (16) are common in medical survival

analysis and reliability engineering.

We proceed to fit (16) to the burst suppression level,

which can be well-estimated from the segmented EEG using

the burst suppression probability (BSP) algorithm [7]. In

particular, we compute an empirical CDF for (13) and (14)

by finding, for each suppression and burst, the correspond-

ing BSP level. We then fit (16) to these CDFs using the

constraints

λ (BSP ) = a1 exp (BSP × b1) , θ = c1 (17)

for bursts and

λ (BSP ) = a2 exp ((1−BSP )× b2) , θ = c2 (18)

for suppressions. For this, we use a nonlinear least squares

numerical method over the free parameters ai, bi, ci. Figure

5 illustrates the empirical CDF for switching from the EEGs

of 20 ICU patients1 and the resulting fit for two BSP levels.

In both cases, the functions (17)-(18), together with (16),

are able to closely match the empirical CDFs. Figure 6

illustrates these fits, as compared to the empirical CDFs for

switching, across the entire range of BSP values. As shown,

the resulting model characterization is close to what we find

from our data.

The one-to-one relationship (6) relates our continuation

and switching functions (for BSP) directly to metabolic state.

We can thus proceed to perform inference of the metabolic

state through a direct application of Bayes formula to (12).

We illustrate the estimation using synthetic data generated

from the model (1). Figure 7A illustrates the burst and

suppression output (nt) from the model when x(t) is a

realization of the random walk (10). Through (12)-(16), and

1These data were collected at the Massachusetts General Hospital as part
of routine clinical monitoring and with institutional review board approval.
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Fig. 5. Example of CDF for switching and resulting fits for two BSP
levels. (A) BSP of 0.2, (B) BSP of 0.7

Fig. 6. Empirical1 and fit switching probability functions vs. BSP for
suppressions (A,B) and bursts (C,D). The fitted functions (B,D) closely
match the empirical CDFs (A,C). White indicates values close to 1 (high
probability of switching) whereas black indicates values close to 0 (low
probability of switching).

the fits of (17)-(18) obtained empirically from our ICU data

(i.e., Figure 6), we obtain the posterior probability density

function of metabolic state x at each point in time. The

mean of each distribution is the metabolic state estimate,

which is plotted in Figure 7C and compared with the true

value. Clearly, the estimate closely tracks the true value. One

feature of note is that the estimate does not immediately

change at each switch from burst to suppression. Instead, and

consistent with our model, it remains stable during each burst

and suppression until such time as its length is improbable

given the current BSP estimate.

IV. CONCLUSIONS

We have provided a reduced-order model for burst sup-

pression that links the EEG directly to reductions in cerebral

metabolic rate. From this model, we developed a probabilis-

tic inference scheme to estimate brain metabolic state from

measured EEG activity. The resulting method was fit and

tested on EEG data gathered from patients in the neurological

ICU. We then tested the method on synthetic burst suppres-

sion data, showing correct inference of metabolic state.

Further testing is, of course, necessary to validate the

use of this method in the clinical setting. Nevertheless, the

model provides justification for the practice of pharmaco-

logically inducing burst suppression as a therapeutic target

for brain protection in neurological intensive care settings

such as unrelenting seizures (refractory status epilepticus),

severe traumatic brain injury, and in cardiac surgery during

Fig. 7. Example of inference of metabolic state from simulated burst
suppression. (A) Simulated bursts and suppressions from (1), (B) Proba-
bility density function of metabolic state x estimated from (12)-(18) (and
corresponding fits). (C) Inferred x (red trace) as compared to the true value
used to generate (A) (blue trace).

circulatory arrest [13]. The model and estimation scheme

may also help inform strategies for optimizing burst sup-

pression when using anesthetic drugs. An eventual goal is to

provide a neurophysiologically-principled basis for inferring

and tracking brain metabolism in the ICU or surgical settings.
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