
Learning Outcome-Discriminative Dynamics in Multivariate

Physiological Cohort Time Series

Shamim Nemati1, Li-wei H. Lehman2 and Ryan P. Adams1

Abstract— Model identification for physiological systems is
complicated by changes between operating regimes and mea-
surement artifacts. We present a solution to these problems by
assuming that a cohort of physiological time series is gener-
ated by switching among a finite collection of physiologically-
constrained dynamical models and artifactual segments. We
model the resulting time series using the switching linear
dynamical systems (SLDS) framework, and present a novel
learning algorithm for the class of SLDS, with the objective
of identifying time series dynamics that are predictive of
physiological regimes or outcomes of interest. We present
exploratory results based on a simulation study and a physiolog-
ical classification example of decoding postural changes from
heart rate and blood pressure. We demonstrate a significant
improvement in classification over methods based on feature
learning via expectation maximization. The proposed learning
algorithm is general, and can be extended to other applications
involving state-space formulations.

I. INTRODUCTION

Physiological control systems involve multiple interact-

ing variables operating in feedback loops that enhance an

organism’s ability to self-regulate and respond to internal

and external disturbances. The resulting multivariate time

series often exhibit rich dynamical patterns that are altered

under pathological conditions, and are therefore informative

of health and disease [1], [2], [3], [4]. Using nonlinear

[1], [2] indices of heart rate (HR) variability (i.e., beat-

to-beat fluctuations in HR), researchers have shown that

subtle changes to the dynamics of HR may act as an early

sign of adverse cardiovascular outcomes (e.g., mortality after

myocardial infarction [3]) in large cohort studies. However,

these studies fall short of assessing the multivariate dynamics

of the vital signs (e.g., heart rate, blood pressure, respi-

ration, etc.), and do not yield any mechanistic hypotheses

for the observed deteriorations of normal variability. This

shortcoming is in part due to the inherent difficulty of

parameter estimation in physiological time series, where

one is confronted by nonlinearities (including rapid regime

changes), measurement artifacts, and/or missing data, which

are particularly prominent in ambulatory recordings (due to
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patient movements) and bedside monitoring (due to equip-

ment malfunction).

In previous work [5], [6], we developed a framework

for automated discovery of shared dynamics in multivariate

physiological time series from large patient cohorts. A central

premise of our approach was that even within heterogeneous

cohorts (with respect to demographics, genetic factors, etc.)

there are common “phenotypic” dynamics that a patient’s

vital signs may exhibit, reflecting underlying pathologies

(e.g., detraction of the baroreflex system) or temporary phys-

iological state changes (e.g., postural changes or sleep/wake

related changes in physiology). We used the switching linear

dynamical system (SLDS) framework to automatically seg-

ment the time series into regions with similar dynamics, i.e.,

time-dependent rules describing the evolution of the system

state. Importantly, the framework allows for incorporation of

physiologically-constrained linear models (e.g., via lineariza-

tion of the nonlinear dynamics around equilibrium points of

interest) to derive mechanistic explanations of the observed

dynamical patterns, for instance, in terms of directional

influences among the interacting variables (e.g., baroreflex

gain or chemoreflex sensitivity).

Although we assumed a priori knowledge of the under-

lying physiology to constrain the dynamical models, the

model parameters have to be learned from the data. As noted

earlier, artifacts in physiological recordings and incomplete

knowledge of the underlying physiology may hinder system

identification using traditional approaches such as maximum

likelihood estimation. In this work, we propose a learning

algorithm specifically designed to learn dynamical features

of data that are predictive of patient outcomes such as a

patient’s physiological state or long-term survival. Previous

approaches have used a two-stage procedure: unsupervised

feature extraction followed by supervised learning for out-

come discrimination. Here we take the novel approach of

jointly learning the dynamics and the classifier. Rather than

depending on label-free unsupervised learning to discover

relevant features of the time series, we build a system that

expressly learns the dynamics that are most relevant for

predicting patient outcome.

II. METHODS

Assume we are given a collection of N multivari-

ate time series and the associated outcome variables:

{(y(1),O(1)),(y(2),O(2)), · · · ,(y(N),O(N))}, where the n-th

time series y(n) is of length Tn, and may include M channels.

The corresponding label O(n) can be a scalar such as a
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Fig. 1. (a) An example bivariate time series out of the 200 simulated. The
time series were divided into 4 categories, each statistically having different
proportions of four modes (M1, · · · , M4, color-coded as red, blue, green,
and black, respectively). Here, we introduced an offset of 2 in one of the
channels of each time series to improve visibility. (b) An example of heart
rate and mean blood pressure from the tilt-table experiment is shown in the
bottom panel (actual values in gray and filtered values in black). The ground
truth segmentation is indicated using color-coded horizontal lines – green
to cyan: slow tilt up and down to supine; red to pink: rapid tilt up and down
to supine; yellow: standing up and back to supine.

discrete patient outcome, or it may itself be be a length-

Tn time series vector that assigns a label to each instant.

Our objective is to find shared dynamical features across the

different time series that are predictive of the labels.

A. Datasets

1) Simulated time series with Switching Dynamics:

We simulated 200 bivariate time series with dynamic

switching among four modes (J = 4, color-coded in Fig.

1(a)). All four dynamical modes were stable bivariate

(M = 2) autoregression (AR) models of order two (P = 2).

To increase the heterogeneity of the dataset, the time series

were simulated using four different Markov transition

matrices (the stationary distribution of the four categories

were [0.67, 0.10, 0.10, 0.13], [0.14, 0.57, 0.19, 0.10],
[0.08, 0.16, 0.54, 0.22], and [0.09, 0.09 , 0.23, 0.59]).
Additionally, we introduced approximately 10% variation

in the AR coefficients across each realization by adding

white Gaussian noise with standard deviation 0.05 to each

of the AR coefficients. Finally, all time series included two

randomly-placed large-amplitude artifacts (uniform random

noise in the interval of [0,15]) of 10 samples duration. Fig.

1(a) shows an example of the simulated time series.

2) Tilt-Table Experiment: Time series of HR and mean

arterial blood pressure (MAP) were acquired from 10 healthy

subjects undergoing a tilt-table experiment. The details of the

protocol are described in Heldt et al. [7]. Briefly, subjects

were placed in the supine position and secured to a table.

Tilting was performed at various speeds from the horizontal

position to the vertical position and back to supine, gen-

erating four postural categories of (1) supine, (2) slow-tilt,

(3) fast tilt, and (4) standing. One example of the resulting

time series is shown in Fig. 1(b).

Data Pre-processing: Since we were interested in the

interaction between HR and MAP in the frequency range

pertinent to sympathetic and parasympathetic regulation [5],

the time series of HR and MAP were high-pass filtered to

remove the steady-state baseline and any oscillation in the

time series with a period slower than 100 beats. This filtering

was done using a 7th order Butterworth digital filter with

cutoff frequency of 0.01 cycles/beat.

B. Learning Switching Dynamics in Cohort time series

Switching Linear Dynamical Systems: The switching lin-

ear dynamical system (SLDS) framework [8] models time

series using two layers of evolution. In the high-level layer,

the time series evolves through a set of J modes according

to Markovian dynamics. In the lower level, each of these

modes corresponds to a unique linear dynamical system that

evolves a continuous state and produces the observed time

series. The generative model is as follows: a latent process

for each time series S
(n)
t ∈ {1, · · · ,J} evolves according to

Markovian dynamics with initial distribution π(n) and J× J

transition matrix Z. Each of the n series has an unobserved

continuous state variable x
(n)
t ∈ R

M that evolves according

to linear dynamics which are determined by the current

mode S
(n)
t , and produces observations y

(n)
t . The jth linear

system has state dynamics A( j), observation matrix C( j), state

noise covariance Q( j), and observation noise covariance R( j):

x
(n)
t = A(S

(n)
t )x

(n)
t−1 + vt vt ∼ N(0,Q(S

(n)
t ))

y
(n)
t =C(S

(n)
t )x

(n)
t +wt wt ∼ N(0,R(S

(n)
t )).

We refer to these mode-specific dynamics together as Θ( j).

EM for Parameter Learning in Switching Dynamical Sys-

tems: A comprehensive treatment of the EM algorithm for

SLDS is presented in Murphy (1998) [8]. Briefly, in practice

we neither know the set of switching variables nor the

parameters that define the modes. EM is a two-pass iterative
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Fig. 2. time series dynamics-based sequential labeling. The first three layers
(from bottom) depict a graphical model representation of the switching lin-
ear dynamical system, and the last layer estimates parameters of multinomial
probability of outcomes (µ1, · · · ,µT ); via the multinomial logistic regression
function σ(.;β ), with parameters β . The round nodes are continuous and
Gaussian random variables, the square nodes are discrete random variables,
and the elliptical nodes are deterministic functions. Shaded nodes are
observed and the rest are hidden. Solid arrows denote the conditional
dependencies among the random variables.
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Fig. 3. (a) Panels A-E show classification performance over ten folds using the EM for 5, 8, 10, 13, and 15 iterations, and EM followed by 30 iterations
of supervised learning (BP). (b) Panel A shows 10-fold cross-validation results, comparing the accuracy achieved using 10 iteration of EM versus 10
iterations of EM followed by 30 iterations of the L-BFGS optimizer. Panel B shows a comparison of the two techniques in terms of classification accuracy.

algorithm: (1) in the expectation (E) step we obtain the

expected values of the latent variables {{x
(n)
t ,S

(n)
t }

Tn
t=1}

N
n=1

using a modified Kalman smoother [8], and (2) in the maxi-

mization (M) step we find the model parameters {Θ( j)}J
j=1,

Markov dynamics Z and initial conditions π(n) that max-

imize the expected complete data log likelihood. In our

implementation of the EM algorithm, we achieve shared

dynamics by pooling together all subjects’ inferred variables

in the M step. We impose physiological constraints on the

model parameters using a constrained least square approach.

Iteration through several steps of the EM algorithm results

in learning a set of J shared modes and a global transition

matrix Z for all the patients.

Sequential Labeling: After using the EM algorithm to

estimate model parameters, the E-step estimates of switching

variables S
(n)
t can be used to predict the training labels O

(n)
t .

Here we assume that each label O
(n)
t can take on any one of

K possible outcomes, and can be modeled using a softmax

classifier with parameters β . We take the classification ob-

jective to be the negative log likelihood (negentropy) of the

outcome labels, given the time series:

− logPr(O|µ(Θ,Z,β )) =−
N

∑
n=1

Tn

∑
t=1

K

∑
k=1

O
(n)
t,k log µ

(n)
t,k (Θ,Z,β ).

(1)

where O denotes the set of all the outcomes, and the

estimated multinomial outcome probabilities, as a function

of the various SLDS parameters, are denoted µ(Θ,Z,β ) (see

Fig. 2).

Outcome-Discriminative Learning: Within the EM frame-

work, unsupervised learning of the dynamics is treated

separately from the discriminative learning of a mapping

between switching states and outcome labels. Our objec-

tive is to design purely-supervised learning algorithm that

discovers dynamical features in series that are predictive

of the outcome variables. The key insight of the proposed

learning algorithm is that the gradient of the objective

calculated in Eq. (1) can be backpropagated through the

network architecture depicted in Fig. 2 to efficiently calculate

the gradient with respect to model parameters. The details

of the analytical expressions for the involved derivatives,

which allows a two-pass algorithm for calculating the exact

gradients, are given in Nemati [9].

The objective of the proposed leaning algorithm is there-

fore to minimize the cost function in Eq. (1):

Θ⋆,Z⋆,β ⋆ = argmin
Θ,Z,β

{− logPr(O|µ(Θ,Z,β ))} (2)

subject to the constraints that covariance matrices Q( j) and

R( j) remain positive definite, and all the elements of Z stay

nonnegative and each row sums to one.
1) EM-based Initialization: Due to the large number of

free parameters in Eq. (2), it is necessary to carefully manage

the optimization procedure in order to avoid overfitting and

local minima. We initialize the parameters by running a

few iterations of the EM, and then switch to a nonlinear

optimization procedure, such as the L-BFGS quasi-Newton

method.

III. RESULTS

A. Simulation Study

We assumed that the number of modes and the model

order is known a priori, and tested the performance of

both the EM and the proposed learning algorithm on the

classification problem of labeling each time series sample as

belonging to one of four modes. The results summarized in

Fig. 3(b) show that the classification performance using EM

improves up to 13 iterations, but further EM iterations do

not improve performance on the held-out test data. Notably,

the figure demonstrates the dependence of the proposed joint

supervised learning on the EM initialization. In particular,

supervised learning benefits from initialization with up to 8

iterations of the EM; further EM iterations seem to lower its

performance, presumably due to local minima and overfitting

of artifacts.

B. Tilt-Table Experiment

We constructed a sequential labeling/classification task

involving the four maneuvers depicted in Fig. 1(b). We

used four modes, each corresponding to an AR model of

order three, to model the bivariate time series of heart rate

and blood pressure. The supervised learning algorithm was

initialized using 10 iterations of the EM algorithm, followed

by 30 iterations of L-BFGS. The results shown in Fig. 3(b)

indicate that the joint supervised learning slightly improves

the negentropy cost function. We also considered the clas-

sification accuracy, which shows a significant improvement

(Wilcoxon Signed-Rank Test, p<0.05) as a consequence of

joint supervised learning.
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1) Physiological Interpretation of the Discovered Dynam-

ics: Since we modeled the dynamics using multivariate AR

models, we were able to derive the parametric power spectra

corresponding to the individual channels of each time series

[4]. We observed a progressive increase in the ratio of the low

frequency (LF: periods of 6-20 beats) to the high frequency

(HF: periods of 2-5 beats) power of the HR time series

(also know as the LF/HF ratio; an index of sympathovagal

activation) from supine to slow tilting, fast tilting, and

standing. This indicates increased sympathetic modulations.

These results were obtained by (1) calculating the parametric

power spectrum of the HR for each mode, using its AR

coefficients, and (2) calculating a weighted average of the HR

spectrum within the segments corresponding to each postural

regime, where the weights were given by the probabilities

of belonging to a given mode. The estimated increase in

LF/HF ratio from supine to standing was significant with

both learning techniques (EM: 4.6 [4.3, 5.4] to 8.4 [8.3,

8.6] † , supervised: 4.4 [3.7 4.8] to 5.53 [5.2 6.5] †, median

[interquartiles]; † indicates p < 0.05 using Kruskal-Wallis

nonparametric ANOVA test).

IV. DISCUSSION AND FUTURE DIRECTION

We presented a novel technique for discriminative learning

of dynamics in cohort time series. The main idea of our

approach was to provide the learning algorithm with the

outcomes (labels) corresponding to each time series sample

(e.g., supine, slow-tilt, etc), and to learn switching linear

dynamics that are maximally discriminative. Using simulated

time series, we showed that the joint supervised learning

algorithm provides a significant improvement over EM fea-

ture extraction, and benefits from an EM-based initialization.

Furthermore, we demonstrated a significant improvement

in classification accuracy when decoding postural changes

involved in the tilt-table experiment, using the multivariate

switching dynamics of HR and BP time series. The technique

developed in this work is also significant from a theoretical

point of view, since we demonstrated that one may apply

backpropagation-based learning algorithm to inference in

dynamic Bayesian networks. This results in dynamical fea-

tures that are predictive of outcome. Since the EM learning

objective is the log likelihood of the unlabeled time series,

it may learn artifacts and other features that are not relevant

to classification. As expected, increasing the number of EM

steps in the simulation study (where high amplitude artifacts

were randomly inserted into all time series) did not improve

the discriminative performance, even though we observed

a significant increase in training log likelihood. Notably, the

proposed EM-based initialization step is qualitatively similar

to the unsupervised learning step used for training Deep

Belief Networks (DBN), where “unsupervised pre-training”

is known to significantly improve the predictive performance

of discriminative neural networks [10].

As demonstrated through the tilt-table example, the pro-

posed approach has the added advantage of having physio-

logical interpretability. Since the features used for prediction

are based on the dynamics of the underlying time series, one

can link the most predictive features for a given outcome

back to the underlying physiology. For instance, tilting is

known to disrupt the sympathovagal balance in the direction

of increased sympathetic activation. Notably, modes that

were most probable during the tilting events had higher

LF/HF ratios, indicating increased sympathetic modulation.

As with any learning algorithm, one must address potential

problems with overfitting to the training data. Although,

in the case of the simulated data we did not observe any

overfitting (see Fig. 3(a)), the tilt-table results shown in

Fig. 3(b) exhibits a slight performance decrease in two out

of ten testing folds. We believe this is due to the small

number of time series within the tilt-table cohort (10 time

series versus 200 time series in the simulation study). Future

work should involve exploring the full potential (and pos-

sible shortcomings) of the proposed learning algorithm for

extracting dynamical features in large physiological cohort

time series, with the goal of characterizing and predicting

patient state and outcomes.
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