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Abstract— Rodent hippocampal population codes represent
important spatial information of the environment during navi-
gation. Several computational methods have been developed to
uncover the neural representation of spatial topology embedded
in rodent hippocampal ensemble spike activity. Here we extend
our previous work and propose a nonparametric Bayesian
approach to infer rat hippocampal population codes. Specif-
ically, we develop an infinite hidden Markov model (iHMM)
and variational Bayes (VB) inference method to analyze rat
hippocampal ensemble spike activity. We demonstrate the
effectiveness of our approach using an open field navigation
example and discuss the significance/implications of our results.

Index Terms— Spatial representation, hippocampal popula-
tion codes, infinite hidden Markov model, variational Bayes

I. INTRODUCTION

The hippocampus plays an important role in spatial nav-

igation and episodic memory. Spatial representation of the

environment is pivotal for navigation in rodents. Unlike the

topographic map with complete metric information, a topo-

logical map contains only relative ordering or connectivity

information between spatial locations and is invariant to

orientation or deformation. An important question is that

how neurons downstream of the hippocampus can infer

representations of space from hippocampal spike activity

without a priori place field information (namely, without

the measurement of spatial correlate). Several reports have

dedicated to mathematical analysis of this problem [6],

[7]. We have previously developed a probabilistic approach

to uncover the neural representation of spatial topology

embedded in rodent hippocampal population codes [2], [3].

Here we extend the previous work and consider a variational

nonparametric Bayesian approach for statistical inference.

Specifically, we reformulate the finite-state hidden Markov

model (HMM) into an infinite HMM (iHMM) within a

nonparametric Bayesian framework, and derive an efficient

variational Bayesian (VB) inference algorithm. The varia-

tional nonparametric Bayesian inference was motivated from

the work of [9], which appeared faster and more efficient

than other sampling-based inference methods [13], [14]. For

our population Poisson firing model, it is also important

to point out that the VB formulation with conjugate priors

implicitly accommodates an overdispersed Poisson model

known as the negative binomial distribution. The negative

binomial distribution can be viewed as a continuous mixture
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of Poisson distributions, where the mixing distribution of the

Poisson rate is a gamma distribution.

We test the new approach with rat hippocampal data

recorded in a two-dimensional (2D) open field environment.

From the derived spatial topology graph, we quantify the

animal’s behavior in terms of the number of uniquely visited

states and the mean state density. We also discuss the

practicality of topographically-constrained codes in spatial

representation and its implication for robotic localization and

mapping.

II. METHODS

A. Previous Probabilistic Model

We have previously used a finite m-state HMM to char-

acterize the population spiking activity from a population

of C hippocampal place cells [2], [3]. We assumed that (i)

the animals spatial location during locomotion, modeled as

a latent state process, followed a first-order discrete-state

Markov chain S = S1:T ≡ {St} ∈ {1, . . . ,m}, and (ii) the

spike counts of individual place cells at time t, conditional on

the hidden state St, followed a Poisson probability with their

respective tuning curve functions Λ = {λc}. Essentially, we

employed a Markov-driven population Poisson firing model

with the following probability distributions

St−1 → St ∼ PSt−1St
(1)

yc,t|St = j ∼ Poisson
(

yc,t|λc(j)
)

(2)

log p(y1:T |S,θ) =
C
∑

c=1

T
∑

t=1

log p(yc,t|St,θ) (3)

where ∼ denotes “distributed from”; P = {Pij} denotes

an m-by-m state transition probability matrix, with Pij
representing the transition probability from state i to j (since
∑m

k=1 Pik = 1, each row of matrix P specifies a multinomial

likelihood); yc,t denotes the number of spike counts from

the c-th place cell within the t-th temporal bin (we used 250

ms bin size during locomotion) and y1:T = {yc,t} denotes

time series of C-dimensional population response vector; and

Poisson(yc|λc) defines a Poisson distribution with the rate

parameter λc. Finally, log p(y1:T |S,θ) defines the observed

data log-likelihood given the hidden state sequence S and

all parameters θ = {π,P ,Λ} (where π = {πi} denotes a

probability vector for the initial state S1.

B. Infinite HMM (iHMM)

We have previously proposed a Bayesian deviance in-

formation criterion (DIC) to select the model size m [2],
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[3]. Here we extend the finite-state HMM to an iHMM,

which is a nonparametric Bayesian extension of the HMM

with an infinite number of hidden states [1]. Namely, the

iHMM treats the priors via a stochastic process. Instead

of imposing a Dirichlet prior distribution onto the finite

state transition matrix P , we use an infinite-dimensional

generalization of the Dirichlet distribution: Dirichlet process,

for the infinite-length multinomial distribution. When the

number of hidden states m reaches infinity, the hierarchical

prior will approach a hierarchical Dirichlet process [13].

Specifically, we construct the Dirichlet process via a “stick-

breaking process” [9], and assume the following prior for the

i-th row of transition matrix P [9]

P̃ij ∼ Beta(1, αP ), Pij = P̃ij

j−1
∏

k=1

(

1− P̃ik

)

(4)

where
∑∞

j=1 Pij = 1, and Beta(a, b) defines a beta distri-

bution with two positive shape parameters a and b. A similar

formulation also applies to the element of π = {πi}

π̃i ∼ Beta(1, απ), πi = π̃i

i−1
∏

k=1

(

1− π̃k

)

(5)

The name “stick-breaking” comes from the interpretation of

πi as the length of the piece of a unit-length stick assigned to

the i-th value. After the first i−1 values having their portions

assigned, the length of the remainder of the stick is broken

according to a sample π̃i from a beta distribution, and π̃i
indicates the portion of the remainder to be assigned to the

i-th value. In Eq. 5, the smaller απ , the less (in a statistical

sense) of the stick will be left for subsequent values.

C. Overdispersed Poisson Model

To account for overdispersion of discrete data (i.e., the

sample variance exceeds the sample mean), the negative

binomial (NB) distribution is often used to characterize

overdispersed Poisson firing of neurons. The negative bi-

nomial distribution is a continuous mixture of Poisson dis-

tributions (i.e., a compound probability distribution) where

the mixing distribution of the Poisson rate is a gamma

distribution. In other words, the NB distribution is viewed

as a gamma-Poisson (mixture distribution): a Poisson(λ)
distribution whose rate λ is itself a gamma random variable

Gamma(r, p
1−p ) (r > 0, 0 < p < 1). By setting λ = rp

1−p or

p = λ
r+λ , it is known that

Poission(λ) = lim
r→∞

NB
(

r,
λ

r + λ

)

(6)

where the NB mean and variance statistics are rp
1−p and

rp
(1−p)2 , respectively. In the Bayesian framework, if we as-

sign the rate parameter with a gamma conjugate prior, the

posterior will be a gamma distribution [2] and the posterior

predictive (upon marginalizing the parameters) will have a

form of NB distribution [10]. Therefore, even a Poisson

firing likelihood model is used, the Bayesian formulation

implicitly accommodates the overdispersion phenomenon,

consequently improving the robustness of the firing rate

model.

D. Variational Bayesian (VB) Inference

The VB inference can be derived in a similar fashion as

in [2]. The objective of VB inference is to maximize the

marginal log-likelihood or its lower bound

log p(y1:T ) = log

∫

dπ

∫

dP

∫

dΛ
∑

S

p(π,P ,Λ)

×p(y1:T ,S|π,P ,Λ)

≥

∫

dπ

∫

dP

∫

dΛ
∑

S

q(π,P ,Λ,S)

× log
p(π,P ,Λ)p(y1:T ,S|π,P ,Λ)

q(π,P ,Λ,S)

=
〈

log p(y1:T ,S,π,P ,Λ)
〉

q
+Hq(π,P ,Λ,S) ≡ F(q) (7)

where p(π,P ,Λ) denotes the parameter prior distribution,

p(y1:T ,S|π,P ,Λ) defines the complete data likelihood, and

q(π,P ,Λ,S) is called the variational posterior distribution

which approximates the joint posterior of the unknown state

and parameter p(π,P ,Λ,S|y1:T ). The term Hq represents

the entropy of the variational posterior distribution q, and F
is referred to as the free energy.

Note that although the state space is infinite, the poste-

riors will only have large transition probabilities in a finite

number of states while all others will be nearly equal to

zero. Similar to the nonparametric VB formulation in [9],

two approximations are made: first we assume a factorial

form of variational posterior distribution q(π,P ,Λ,S) =
q(π)q(P )q(Λ)q(S) ≈ p(π,P ,Λ,S|y1:T ); second, we only

compute the probabilities of m states of the infinite large

state space (where m is called the “truncation level of stick-

breaking”). Note that the truncation level is an approximation

of the infinite state space, which is statistically different from

the assumption of a finite m-state space [9].

We use a beta prior for the stick-breaking probability (Eqs.

4 and 5) and a gamma conjugate prior for the Poisson rate

parameter λc(j) (see [2]). In the VB-M step, for i, j =
1, . . . ,m, we update the variational parameter posteriors (in

the same conjugate family) as follows

q(π̃i) = Beta(aπi
, bπi

)

= Beta

(

1 + q(S1 = i), απ + q(S1 > i)

)

q(P̃ij) = Beta(aPij
, bPij

)

= Beta

(

1 +

T
∑

t=2

q(St−1 = i, St = j),

αP +

T
∑

t=2

q(St−1 = i, St > j)

)

where (aπi
, bπi

) and (aPij
, bPij

) are the hyperparameters

of the beta distributions for π̃i and P̃ij , respectively. The

variational posterior q(Λ) has a nearly identical form as

derived previously [2].
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In the VB-E step, we update the variational state posterior

log q(S) = − logZ(y1:T ) +
〈

log p(S,y1:T |θ)
〉

q(π)q(P )q(Λ)

= − logZ(y1:T ) +

m
∑

i=1

Ŝ1,i

〈

log πi
〉

q(π)

+

T
∑

t=2

m
∑

i=1

m
∑

j=1

Ŝt−1,iŜt−1,j

〈

logPij
〉

q(P )

+

T
∑

t=1

C
∑

c=1

m
∑

i=1

Ŝt,i
〈

− λic + yc,t log λic
〉

q(Λ)

with
〈

log πi
〉

q(π)
= ψ(aπi

)− ψ(aπi
+ bπi

)

+

i−1
∑

k=1

[

ψ(bπk
)− ψ(aπk

+ bπk
)
]

+ C1

〈

logPij
〉

q(P )
= ψ(aPij

)− ψ(aPij
+ bPij

)

+

i−1
∑

k=1

[

ψ(bPik
)− ψ(aPik

+ bPik
)
]

+ C2.

where ψ is the diagamma function, C1 and C2 are normaliz-

ing constants such that
∑

i q(πi) = 1 and
∑

j Pij = 1. The

computation of
〈

−λic+yc,t log λic
〉

q(Λ)
is the same as [2].

Finally, we compute the free energy

F(q(π)q(P )q(Λ)q(S)) by iteratively minimizing four

equations of the Kullback-Leibler (KL) divergence between

the posteriors and the priors until it reaches a local optimal

solution.

III. EXPERIMENTAL DATA AND RESULTS

Experiments were conducted under the supervision of

the Massachusetts Institute of Technology Committee on

Animal Care and followed the NIH guidelines. The micro-

drive arrays containing between 11 and 24 tetrodes were

implanted above the right dorsal hippocampus of male Long-

Evans rats. The tetrodes were slowly lowered into the brain

reaching the cell layer of CA1 two to four weeks following

the date of surgery. Recorded spikes were manually clustered

and sorted to obtain single units using a custom software

(XClust, M.A.W.). Data from one animal’s recording session

were used here for illustration purpose. Once 37 stable

hippocampal units were obtained, the animal was allowed to

freely foraged in an open field environment (radius: 60 cm).

To identify the period of rodent locomotion during spatial

navigation, we used a velocity threshold (>12 cm/s) to select

the RUN epochs and merged them together. The animal’s

RUN trajectory (about 7.5-min recording) and spatial occu-

pancy map are shown in Fig. 1.

A. State Transition Matrix and Topology Graphs

We started with a large value of the truncation level:

m = 169 for the iHMM. Upon VB inference we recovered

the posterior and posterior mean of the state sequence and

state transition matrix of the iHMM. As expected, many

rows of the estimated matrix P̂ shrank to zeros (Fig. 2,
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Fig. 1. Rat’s behavioral trajectory (left) and spatial occupancy (right, 5cm
bin size) in the open field environment.
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Fig. 2. Left: Estimated state transition matrix of iHMM for m = 169.
Upon VB inference, many matrix rows were nearly zero. Right: Inferred
spatial topology graph based on the a nonzero submatrix (82-by-82) of the
left panel (upon proper thresholding and renormalization).

left). We empirically selected a nonzero submatrix with size

82-by-82 from P̂ , thresholded (zeroing values below 0.01)

and renormalized it (denoted by P̂ new). By varying the

initial m value between 100 and 180, the “effective” state

dimensionality remained similar (between 78 and 84). This

result appeared very robust (i.e., low variance) compared to

the Bayesian DIC model selection (for an independent fixed

81-state HMM, results not shown).

We further visualized the spatial topology by an undirected

graph, in which the nodes represent the states. The presence

of the edges between the nodes indicates that two nodes were

connected in space, and the strength of the edge between two

nodes (shown by the color darkness) is proportional to the

transition probability value between two states. Specifically,

we fed P̂ new to a custom graph-drawing force-based algo-

rithm [2] to produce a 2D topology graph (Fig. 2, right).

Note that the topology graph is dimensionless (a.u.) and is

invariant to scaling and rotation.

For the purpose of result assessment, we plotted the state

space map (Fig. 3A, which showed the median value of the

spatial position that each state represented) as well as the

estimated animal’s spatial trajectories (Fig. 3B,C). In the

illustrated example, the mean (median) of the estimation

errors across the complete RUN trajectory in the x and y-

axes were 11.51 (8.81) cm and 10.76 (8.59) cm, respectively.

B. Quantification of Topological Codes

From the derived topology graph, we characterized the

activeness of the rat’s RUN behavior in time (Fig. 4, left) by

counting the number of uniquely visited nodes (normalized

by the total number of the nodes). Given the state space

7094



100 150 200

80

100

120

140

160

180

1 2
4

8

9

11
13

1516

17

18

1920

21

2223

24

25

26

27

29

30
31

33

34

35

36

39

4041

42

43

44

45

47

48

49

50

51

52

54

56

57

58

59 60

61

62
63

65

66

6768

69

70

71

72

73
74

75

76

77

78

80
81

82
83

84

85

87

88

89

90
92

93

96

97

103

105

109

126

x (cm)

y
 (

c
m

)

0 50 100
50

100

150

200

x
 (

c
m

)

Time bin (250 ms)
0 50 100

50

100

150

200

y
 (

c
m

)

Time bin (250 ms)

 

 A B C

Fig. 3. A, Estimated state space map, where the median value of the spatial
position that each state (circled number) represented was shown. From the
state space map and state sequence, we inferred the animal’s trajectory.
B,C, Comparison between the actual (black) and estimated (blue) animal’s
RUN trajectory (based on the state space map in A). The mean (median)
estimation errors across the complete RUN trajectory in the x and y-axes
were 11.51 (8.81) cm and 10.76 (8.59) cm, respectively.
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map, we also assessed the state density for every discretized

spatial location (bin size 5 cm) of the environment. The

state density measures the degree of ambiguity about the

number of unique states required to represent a specific

spatial location. Similar to the analysis in [3], we illustrated

the state density by a heap map (Fig. 4, right), with a

mean (median) value of 5.4 (6). Note that the state density

unit is 25cm−2. Comparing the heat map with the animal’s

occupancy map (Fig. 1, right), it appeared that these two

maps were correlated (Pearson’s correlation ρ = 0.60, P <

10−7), and the area with a high occupancy was more likely

to have a high state density.

C. Robustness of the Population Firing Model

As discussed in Section II.C, given a gamma conjugate

prior, the posterior predictive distribution of Poisson firing

model has a form of negative binomial distribution. To assess

the robustness of the population firing model, at every 250-

ms temporal bin we added additional non-Poissonian noise

to the observed population spike counts by drawing from

a negative binomial distribution (Eq. 6, with r = 1, p =
0.5, mean 1; or equivalently, 4 Hz noise). Upon repeating

the analysis, we found that the results of effective state

dimensionality, mean state density, and topography graph

were similar. This suggests that the Poisson firing model is

robust to overdispersion within the VB inference framework.

IV. DISCUSSION

We have demonstrated that the HMM integrated with VB

inference is capable of uncovering the neural representation

of spatial topology from rat hippocampal population codes

[2], [3]. The current work extends it to the iHMM by using

a variational nonparametric Bayesian approach, our results

validate the robustness of the new approach. There have been

debates regarding the spatial representation of hippocampal

codes: topographic vs. topological. A pure hippocampal

topographic code implies a precise characterization of the

place fields with respect to the full environment. Such a code

would be optimal for decoding, but it may not be efficient

for encoding especially given a large environment and small

sample size. In contrast, an abstract topological code with a

small number of topographic constraints may achieve a good

tradeoff between decoding accuracy and encoding efficiency

(results shown in [3]). Such topographic constraints may be

environmental landmarks. From a computational perspective,

it is therefore more efficient to decode an animal’s spatial

location based on a “fuzzy” semi-topographic map without

storing the place fields of neuronal ensembles [3], [4].

In terms of engineering applications, our results also

provide insight into the so-called “simultaneous localization

and mapping” (SLAM) problem in mobile robots [5]. In this

context, the sensor observations consist of noisy odometry

measurements (obtained from laser-range finder or camera

data) and the objective is to establish a spatial representation

that allows correcting the internal model of the dynamic

environment. In a graph-oriented approach [11], the nodes of

pose graphs represent the poses of the robot at discrete time

steps and are connected by constraints. Such spatial maps

consist of both topographic and topological representations.
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