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Abstract— This paper is concerned with predicting the
occurrence of Periventricular Leukomalacia (PVL) using
vital data which are collected over a period of twelve hours
after neonatal cardiac surgery. The vital data contain heart
rate (HR), mean arterial pressure (MAP), right atrium
pressure (RAP), and oxygen saturation (SpO2). Various
features are extracted from the data and are then ranked
so that an optimal subset of features that have the highest
discriminative capabilities can be selected. A decision tree
(DT) is then developed for the vital data in order to identify
the most important vital measurements. The DT result
shows that high amplitude 20 minutes variations and low
sample entropy in the data is an important factor for
prediction of PVL. Low sample entropy represents lack
of variability in hemodynamic measurement, and constant
blood pressure with small fluctuations is an important
indicator of PVL occurrence. Finally, using the different
time frames of the collected data, we show that the first
six hours of data contain sufficient information for PVL
occurrence prediction.

I. INTRODUCTION

Newborns with congenital heart disease are at high

risk of brain injury and adverse neurodevelopmental

outcomes [1], [2]. A study by Miller et al. [3] showed

that full-term newborns with congenital heart defect

(CHD) have widespread brain abnormalities before they

undergo cardiac surgery. The imaging findings of their

study are similar to those in premature newborns and

may reflect abnormal brain development in utero. Licht

et al. [4] showed that before surgery, term infants with

hypoplastic left heart syndrome and transposition of the

great arteries have brains that are smaller and structurally

less mature than expected.

Periventricular leukomalacia (PVL) is a type of brain

injury that affects infants. The condition involves the
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death of small areas of the brain tissue around fluid-

filled areas called ventricles. Research has shown a high

incidence of PVL both before and after cardiac surgery

in neonates [5], [6]. Recently, there has been a growing

interest in clinical research to aim to understand the

progression and pathology of PVL, to develop protocols

for the prevention of PVL development and to examine

the trends in outcomes of individuals with PVL [7].

The study of relationship between preoperative cerebral

blood flow and preoperative neurologic conditions was

carried out by Licht et al. [8].

Despite advancement in research in the field of PVL,

there are no treatments currently prescribed for PVL;

furthermore, clinical investigation of these patients al-

most always have low accuracy [9]. This is due to fact

that the origin of PVL and its physiology still remain to

be clearly understood.

A computer based decision making tool, also referred

to as an “Intelligent Patient Monitoring Tool” or simply

The IPM tool, will help the care-givers aggregate differ-

ent types of physiological data and discover the hidden

knowledge or patterns in the data to quickly make the

correct decision.

In our previous paper [10], we have shown how

decision tree (DT) will help us to highlight the role of

blood dioxide carbon contents (HCO3 and PaCO2). In

this study, we investigate how DT can help us to predict

the occurrence of the PVL using the vital data. The aim

is to identify the most important risk factors based on

the classification rules to be extracted. These rules will

enable better management of the patient targeting the

reduction of events, as well as, reduction of the cost of

therapy, due to the expected restriction of interventions

to necessary cases only.

II. MATERIALS AND METHODS

A. Data Collection

Data from 44 neonates for a period of 12 hours after

neonatal cardiac surgery were collected according to

a pre-specified protocol at the Children’s Hospital of

Philadelphia (CHOP). Subjects of this study are limited

to two cases of congenital heart disease, hypoplastic

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 7080



left heart syndrome (HLHS) and transposition of great

arteries (TGA), accounting for the fact that these two

diseases are considered to have the highest likelihood

of PVL occurrence as their postoperative effect. Clinical

and demographic characteristics of the study cohort are

shown in Tab. I.

TABLE I

DEMOGRAPHIC CHARACTERISTICS OF THE COLLECTED DATA.

DHCA IS DEEP HYPOTHERMIC CARDIAC ARREST TIME, CPB IS

CARDIOPULMONARY BYPASS TIME, CCC IS CROSS CLAMPED

DURATION TIME.

Male, % 59
Diagnosis, %HLHS 55

DHCA time, mean ± SD 27 ± 26
CPB time, mean ± SD 102 ± 31
CCD time, mean ± SD 61 ± 19

PVL, % 45
Extent, mean ± SD 94 ± 251

For each patient, we collected vital data as well as

blood gas measurements. The sampling time for the vital

data varies both inter and intra-patient between 4-17

seconds.

B. Developed Algorithm

Next, we discuss the steps involved with the designed

algorithm for the task of data classification and role

extraction. The patient data is collected at the hospital

which will be used to form the pool of features. A

mutual information based algorithm will then be applied

to rank the features in the feature pool. After forming

the ordered feature set the optimal feature subset that

encapsulates the most critical features will be selected.

Compared to the original feature set, the optimal feature

subset is reduced in size; however, by maximizing the

class separability measure, this subset will result in

higher accuracy in the final prediction. The selected

features will then feed to the decision tree (DT). In

Fig. (1) we provide a schematic overview of the pro-

posed algorithm.

C. Feature Extraction

Next, the feature pool will be developed based on the

collected set of physiological measurements. The feature

pool contains features generated from the vital data and

represents the characteristics of this data. Currently, the

derived features of vital measurements include: min,

max, mean, variance, skewness, kurtosis, trend, energy

of wavelet coefficients in different time frames and

multi scale entropy (based on sample entropy measure).

Minimum and Maximum of the data are important
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Fig. 1. Schematic of the proposed algorithm.

because they could potentially be representative of some

mechanisms triggered when a measurement passes crit-

ical values. Skewness and kurtosis are third and fourth

order statistical moment of a random variable defined

by (1).

mn(x) = E{(x−µ)n} (1)

where, n is the order, µ is the mean value of the data

and E is the expected value.

For this study we focus on the variation in the

data in 1 min, 20 min and 2 hour periods and we

would like to find the most important time scales in

the different waveforms. The energy of the continuous

wavelet transform (CWT) coefficients of the vital data at

these time scales is a measure of variation in the different

time frames.

Sample Entropy (SampEn) is measure of signal com-

plexity and is the negative natural logarithm of the

conditional probability of having signal window with

length N, having repeated itself within a tolerance r for

m points, will also repeat itself for m+1 points, without

allowing self-matches [11]. SampEn has been used in the

literature to evaluate the cyclic behavior of heart rate

variability (HRV) and blood pressure variability (BPV)

[12], [13]
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D. Feature Ranking

In this paper we apply the concept of mutual in-

formation to rank the features. Mutual information of

random variables is a quantity that measures the mutual

dependence of those random variables. Let xi be the

ith feature and p(xi) be its corresponding probability

density function. The mutual information is then defined

as:

I(xi;ck) = ∑
i∈X

∑
k∈{±1}

p(xi,ck) log
p(xi,ck)

p(xi)p(ck)
(2)

where, ck represents the classes and p(xi,ck) is the joint

probability distribution of xi and ck. We will approach

the feature selection process using mutual information

as an optimization problem which seeks to find a subset

Sopt from the whole feature set S by maximizing the in-

formation content I(s;ck) between the feature set and the

output. In this proposal we use the algorithm proposed

by Kappaganthu and Nataraj [14]. They maximize the

mutual information of subset Si using (4):

I(xi;ck) =
1

|S| ∑
xi∈S

I(xi;ck)−
1

|S−1|2 ∑
xi,x j∈S

I(xi;x j) (3)

x = {x : x ∈ Si ⊂ S} (4)

E. Class Separability Measure

Now that the feature vector has been formed, the next

step is to measure the discriminative capacity of the

feature vectors. The class separability measure is defined

as a divergence between classes using the feature vector

x,

d =
∫ ∞

−∞
(p(x|w1)− p(x|w2))ln

p(x|w1)

p(x|w2)
dx (5)

where, p(x|wi) is the conditional probability of x with

respect to wi. An optimal feature subset is the feature

subset that maximizes the class separability.

III. RESULTS

Now, the primary feature pool has been formed; the

features have been ranked using the mutual information

technique and the optimal feature set has been selected

using the class separability measure. Table (II) shows

12 features that form the optimal feature set. The table

shows that the energy of wavelet coefficients, sample

entropy and kurtosis are the most important features for

PVL occurrence prediction.

In this step we develop our classifier in order to

classify PVL patients for healthy subjects. The DT

constructed based on the optimal feature set to predict

the occurrence of the PVL is represented in Fig. (3).

Investigating this DT shows that high amplitude 20

TABLE II

OPTIMAL SUBSET OF THE FEATURES WHICH WILL BE USED FOR

DESIGNING THE CLASSIFIER.

Rank Feature

1 2 hour variations in HR
2 MAP sample entropy
3 20 min variations in HR
4 Kurtosis HR
5 1 min variations in SpO2

6 20 min variations in SpO2

7 Kurtosis MAP
8 1 min variations in MAP
9 Min SpO2

10 HR sample entropy
11 2 hour variations in MAP
12 RAP sample entropy

minute variations and low sample entropy in the data is

an important factor for prediction of PVL. Low sample

entropy represents lack of variability in hemodynamic

measurement, and constant blood pressure with small

fluctuations is an important indicator of PVL occurrence.

X1>90

PVL

NO

N
O N
O

N
O

N
O

N
O

YES

YES

YES

Y
ES

Y
ES

Y
ES

X1: 2 hour variation in HR

X2: MAP sample entropy

X3: 20 min variation HR

X4: Kurtosis HR

X6: 20 min variation SpO2

X12: RAP sample entropy

X4>80 X2>2.7

X3>5.3 X6>4.2 X12>3.1

PVL PVL PVLN N N

Fig. 2. Result of forming DT from the optimal feature set derived
from vital measurements. The tree is pruned at two levels based on
Fishers exact test (FET).

The classification accuracy of the designed classifier is

shown using the receiver operating characteristic (ROC)

curve. The higher area under the curve shows the higher

classification accuracy. The plot shows high accuracy

in classification although the relatively small data set

makes it impossible to have a smooth curve.

In the final step of the work, we would like to know

how long the data collection is sufficient for timely

prediction of the PVL. To the best of our knowledge

there is no study done so far to find the minimum length

7082



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Fig. 3. Receiver operating characteristic (ROC) curve (plot of true
positive rate vs. false positive rate).

of data needed after neonatal heart surgery for PVL

prediction. To this end we trained and tested the DT

with first 2, 4, 6 and 8 hours of data and we compared

the prediction results with the complete data length. We

used sensitivity, positive predictivity and their geometric

mean, F-score, as criteria to evaluate the performance

of the classifier. Table III shows that 6 hours of the

data contains sufficient information for reliable PVL

prediction. Another way to interpret this result is that

after 6 hours the chance to prevent PVL will decrease

significantly. If validated further, this would clearly be

very important information for clinical practice.

TABLE III

PREDICTION ACCURACY FOR DIFFERENT LENGTH OF DATA. TP:

TRUE POSITIVE, FP: FALSE POSITIVE, TN: TRUE NEGATIVE, FN:

FALSE NEGATIVE.

DATA TP FP FN TN Se PP F-Score

All 19 2 1 22 95% 90% 0.93
8Hours 19 2 1 22 95% 90% 0.93
6Hours 18 1 2 23 90% 95% 0.93
4Hours 16 4 4 20 80% 80% 0.80
2Hours 15 4 5 20 75% 79% 0.76
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