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Abstract— Recently, there have been many efforts to develop
Brain Computer Interface (BCI) systems, allowing identifying
and discriminating brain activity, as well as, support the control
of external devices, and to understand cognitive behaviors. In
this work, a feature relevance analysis approach based on an
eigen decomposition method is proposed to support automatic
Motor Imagery (MI) discrimination in electroencephalography
signals for BCI systems. We select a set of features representing
the best as possible the studied process. For such purpose, a
variability study is performed based on traditional Principal
Component Analysis. EEG signals modelling is carried out by
feature estimation of three frequency-based and one time-based.
Our approach provides testing over a well-known MI dataset.
Attained results show that presented algorithm can be used as
tool to support discrimination of MI brain activity, obtaining
acceptable results in comparison to state of the art approaches.

I. INTRODUCTION

The electroencephalography (EEG) that is the most com-
monly employed method for monitoring brain activity has
been used for several applications, such as: epilepsy de-
tection, analysis of cognitive behaviors, game controlling,
among others. Brain Computer Interfaces (BCI) take advan-
tage of the extracted information from EEG signals to get a
direct communication channel between the human brain and
the machine without a need of any motor activity [1]. Tradi-
tionally, BCI is used to help people with disability by means
of the analysis of the human sensorimotor functions, which
are based on the paradigm in cognitive neuroscience named
as Motor Imagery (MI), e.g. imagination of hand movements,
whole body activities, relaxation, etc. [2]. However, the
analysis of the EEG signals requires to develop suitable
feature representation, feature selection and/or extraction,
and classification methodologies to improve performance of
real-world BCI applications.

Regarding feature representation methodologies for BCI
systems, the attributes are estimated by different methods
such as Adaptive Autoregressive (AAR) coefficients, Hjorth
parameters, Power Spectral Density (PSD), Common Spatial
Patterns (CSP), and continuous and discrete wavelet trans-
forms (CWT and DWT) [3], [4]. Although, many features
may be extracted from different methods, several features
may not contain relevant information introducing redun-
dancy. Therefore, it is necessary to find a subset of attributes
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that preserving, as well as possible, the input data variability,
allows identifying the most important information that helps
to recognize different classes from EEG data.

Several approaches have been used to determine rele-
vance of the computed features in BCI systems [3], [4].
Nevertheless, most of these feature selection methods are
computationally expensive and they are not able to find
directly a measure that relates each feature with its discrim-
inative contribution. Moreover, in most of the cases, there is
not a suitable validation framework that allows ensuring a
generalized performance, leading to overtrained systems.

This work discusses a method of feature relevance analysis
aiming to identify a subset of features describing properly
the EEG signals in framework of BCI systems. The method
uses Principal Component Analysis (PCA) as statistical
eigendecomposition for searching the directions with greater
variance to project the data. Proposed approach searches
for input features having higher overall correlations with
principal components, but improving the data separability
by means of a variability criterion. In order to model the
studied phenomenon, three frequency-based (PSD, DWT, and
CWT) and one time-based (Hjorth parameters) characteriza-
tion strategies are employed, commonly used in the state of
the art [3]–[5]. Additionally, a soft-margin Support Vector
Machine (SVM) based classifier is trained, and the BCI
system is validated by means of a 10-fold cross validation
methodology. As a result of testing the well-known MI
dataset, we obtain acceptable results in comparison to state
of the art approaches.

II. THEORETICAL BACKGROUND

A. Extraction of short time EEG Features

Let y = {yt : t = 1, . . . , Ty} be a real-valued time-series
related to a EEG channel in a BCI system, being Ty the
number of provided samples. To extract suitable information
from y, in the concrete case, the following 3 frequency-based
and one time-based characterization strategies are estimated:

Power Spectral Density (PSD). Let p = {pf : f =
0, . . . , Fs/2} the PSD of input signal y that, in the concrete
case, is computed by the nonparametric Welch’s method,
being Fs the sample frequency [4]. Particularly, the fast
Fourier transform algorithm is employed to estimate the PSD,
by dividing the time-series into M overlapped segments of
length L, and applying a smooth time weighting window
w = {wi : i = 1, . . . , L}, obtaining the windowed segments
v(m) = {v

(m)
i : i = 1, . . . , L}, with m = 1, . . . ,M .

The main goal is to deal with the non-stationary nature of
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the EEG, assuming a piece-wise stationarity into each over-
lapped segment. So, inspired by singular spectrum analysis-
based approaches for analyzing one-dimensional time-series,
the segment length is fixed as L > Fs/Fr, with Fr the
minimum frequency to be considered within the analysis [6].
Thus, the modified periodogram vector u = {uf : f =
0, . . . , Fs/2} is calculated by Discrete Fourier Transform as:

uf =
∑M

m=1
|
∑L

i=1
v
(m)
i exp (−j2πif)|2

Afterwards, each element of PSD vector p can be com-
puted as pf = uf/(M LU), with U = E

{

|wi|
2 : ∀i ∈ L

}

,
where notation E {·} stands for expectation operator. As
stated in [7], the motor imagery discrimination analysis is
mostly provided for µ (8 − 13Hz) and β (13 − 30Hz)
bands. Therefore, their PSD bands (noted as Sµ and Sβ ,
respectively) are calculated from p, for which the PSD
magnitude is parameterized based on the first and second
statistical moments.

Continuous Wavelet Transform (CWT). This inner-product-
based transformation quantifies the similarity between a
given signal and the considered base function (termed moth-
ers wavelets). Therefore, the wavelet transform of a EEG
signal y, at time t and frequency f , is provided by their
convolution with the scaled and shifted wavelet [4]. In the
concrete case, the short-time instantaneous amplitude of
the CWT of EEG data is accomplished, where two Morlet
wavelets centered at the bands of interest (10 Hz and 22
Hz) to highlight the µ and β bands, respectively. After
that, the first and second statistical moments, as well as the
maximum value of the coefficients magnitude are estimated;
those values are considered as the CWT based features.

Discrete Wavelet Transform (DWT). This transformation,
which provides a multi-resolution decomposition and non-
redundant representation of the input signal, has a wide ap-
plication in biomedical signal processing, especially, for non-
stationary signals such as EEG [5]. A seventh order Symlet
mother wavelet is used, for which the detail coefficients of
the third and fourth level are obtained (DWT4 and DWT3)
to compute the required frequency bands µ and β. Namely,
the estimated frequency bands for each wavelet level are
62.5 − 125Hz; 31.3 − 62.5Hz; 15.7 − 31.3Hz (including
the β rhythm); 7.9− 15.7Hz (including the µ rhythm); and
0.5 − 7.9 Hz [4]. From the detail coefficient sets, DWT4
and DWT3, the first and second statistical moments, and the
maximum value are estimated.

Hjorth parameters. A time-domain based characterization
is also employed to describe the EEG data. Particularly, from
the input signal y, the following short-time Hjorth parame-
ters are estimated: activity, mobility, and complexity [3]. The
activity that is directly described by the variance is related
to the signal power, σ2(y). The mobility is a measure of the
signal mean frequency, defined as φ(y) =

√

σ2(y′)/σ2(y),
being y′ the derivative of y. The complexity measures the
deviation of the signal from the sine shape, that is, the change
in frequency and it can be computed as ϑ(y) = φ(y′)/φ(y).
From the estimated short-time Hjorth parameter sets, lastly,

the first and second statistical moments, as well as the
maximum value are obtained as features.

B. Eigendecomposition-based Feature Relevance Analysis

From the above mentioned EEG representations, a feature
space matrix X ∈ R

n×D is obtained, assuming that a set of
EEG signals {Yr : r = 1, . . . , n} is provided, being n the
number of training trails of a given subject in a BCI system,
and D the number of estimated features. Particularly, each
column, y(r)c , of Yr ∈ R

TY ×nC holds the c-th studied EEG
channel, with c = 1, . . . , nc and being nc the number of
analyzed channels. To carry out a low-dimensional repre-
sentation of the original feature representation space, this
work uses PCA that is a the statistical eigendecomposition
searching for directions with greater variance to project
the data. Although, PCA is commonly used as a feature
extraction method, it can be useful to properly select a
relevant subset of original features that better represent the
studied process [8], [9]. In this sense, given a set of features
Ξ = {ξξξd : d = 1, . . . , D}, where ξξξd corresponds to
each column of the input data matrix X , the relevance of
each feature can be analyzed by the PCA mapping. More
precisely, the relevance of ξξξd can be identified by computing
the vector ρρρ = {ρd : d = 1, . . . , D}, defined as follows:

ρρρ = E {|λdµd| : ∀d ∈ D
′}

being λd and µd the eigenvalues and eigenvectors of the
covariance matrix Σ ∈ R

p×p estimated as Σ =X⊤X . The
main assumption is that the largest values of ρd point out
to the best input attributes, since they exhibit higher overall
correlations with principal components. TheD′ value is fixed
as the number of dimensions needed to conserve a percentage
of the input data variability.

III. EXPERIMENTS AND RESULTS

A. EEG Database

To prove the capability of the proposed approach in iden-
tifying suitable subsets of features devoted to support EEG-
based BCI systems, a Motor Imagery dataset is tested. The
EEG data collection is provided by the Institute for Knowl-
edge Discovery (BCI competition 2008 - set B), described
in [1]. This database is based on the paradigm in cognitive
neuroscience of MI, e.g. imagination of hand movements,
whole body activities, relaxation, etc.. The database holds
two-choice trials, that is, MI of left hand (class 1) and MI
of right hand (class 2). The EEG signals are obtained from
nine subjects with three bipolar recordings (C3, Cz, and C4)
during 5 performed sessions. The signals were sampled at the
rate Fs = 250Hz, and bandpass-filtered between 0.5Hz and
100Hz. The first two sessions contain data without feedback
and the last three sessions were recorded with feedback.
Each one of the sessions 1 and 2 consisted of six runs
with ten trials per class (i.e. 120 repetitions of each MI
class for person). The sessions 3, 4 and 5 has four runs
with twenty trials per class (i.e. 160 repetitions of each MI
class for person). In this work, the training and validation
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Fig. 1. Proposed automatic motor imagery discrimination general sketch.

data employed correspond to the first three sessions (i.e. 400
trials - 240 without feedback and 160 with feedback).

From the original EEG recordings just the labeled seg-
ments (MI of right and left hands) are extracted to further
be considered. The segments without feedback start with a
visual cue displayed (an arrow pointing either right or left
according to class) and they end when the subject imagine
the movement. The segments with feedback are extracted
while the cue is present, therefore, duration of each extracted
segment is 5.25 s and 5.5 s to the recordings without and
with feedback, respectively. The proposed methodology can
be summarized as in Fig. 1.

B. Experimental Set-up and Obtained Results

The C3, Cz, and C4 EEG channels per subject of MI
dataset are used, which are corrupted by ocular artifacts
producing interferences to the EEG signals. Nonetheless,
these artifacts are not removed to attained more realistic
results and to assert the proposed method robustness to the
ocular artifacts [4]. Thus, for a given subject, a set of signals
{Yr : r = 1, . . . , 400} is obtained, with Yr ∈ R

TY ×3, and
TY = 1313 for trials corresponding to sessions 1 and 2, and
TY = 1375 for session 3. According to above described
features, three frequency-based (PSD, CWT, and DWT)
and one time-based (Hjorth parameters) sets of features are
estimated for each channel y(r)c (c = 1, . . . , 3) of a given
subject trial r. Hence, feature space representation matrix
X ∈ R

400×81 is calculated. It is worth noting that for the
segment length value L in PSD and Hjorth parameters based
features, the minimum frequency is fixed as Fr = 8Hz,
taking into account that the band of interest for the analyzed
BCI application is 8− 30Hz (including µ and β rhythms).

Regarding to the eigendecomposition-based feature rele-
vance analysis (see §II-B), the number of dimensions D′ in
PCA is calculated to get 95% of the input data variability.
Thus, the inferred relevance vector ρ ∈ R

81×1 is used to
rank the original features. In addition, a soft-margin SVM
classifier is trained using a regularization parameter C ∈ R

+,
and a Gaussian kernel k(xa,xb) = exp(−||xa − xb||/2δ

2),
with band-width δ ∈ R

+; and being xa,xb ∈ R
1×D two

given samples of the feature representation space [10].
We generate a curve of classifier performance adding step-

wise each one of characteristics obtained in each subspace
representation based on the order, given by the relevance
vector ρρρ. For a given subset, the optimal working point is
searched using a 10-fold cross validation scheme to fix both
the C and δ values. The former value is selected from the
set {1, 10, 100, 1000}; while latter value is chosen from the

set {δs, 10δs, 100δs, 1000δs}; being the introduced constant
δs = 0.9min(E {σ(Ξ)}, (1/1.34)E {iqr(Ξ)}) the Sylver-
man rule based Gaussian kernel band-width, where σ(·)
computes the standard deviation and iqr(·) the interquartile
range of a provided feature set, respectively [11].

In Fig. 2(a), normalized relevance value of the extracted
features is shown, i.e., the relevance value in terms of
the variability that the features provide. Besides, Fig. 2(b)
presents the accuracy of the learning system as a function
of the number of chosen features according to proposed
relevance analysis. Finally, the Table I shows the best BCI
system performance for each subject, where #F is the
number of selected features according to relevant analysis.

(a) MI dataset mean feature relevance values

Number of features
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(b) Learning curves

Fig. 2. Training of SVM classifier using feature relevance.
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TABLE I

CLASSIFICATION RESULTS (AVERAGE ACCURACY ± STANDARD

DEVIATION FOR 10-FOLD CROSS VALIDATION)

Subject Accuracy (%) # F Subject Accuracy (%) # F

B01 74.52±03.89 34 B06 66.36±06.41 39
B02 73.00±04.38 33 B07 76.75±07.27 30
B03 62.25±06.82 45 B08 77.86±06.92 31
B04 75.75±04.86 26 B09 71.25±05.17 33
B05 67.60±05.87 47 Mean 71.70±05.29 35.33

IV. DISCUSSION

As seen from Fig. 2(a), the PSD method provides a better
relevance value than the other analyzed features. The above
statement can be explained by the PSD features are estimated
into a restricted frequency band-width, to take advantage
of the prior knowledge about the considered phenomenon.
That is, highlighting the µ and β bands, the BCI-system
is able to identify suitable patterns supporting the MI data
discrimination, as mentioned in previous approaches [4],
[7]. Besides, the signal windowing procedure allows to deal
with the non-stationary nature of the EEG. From a EEG
channel point of view, C3 and C4 provides better variability
than Cz for the PSD features, which can be related to
the spatial position of the sensors. Regarding to DWT,
they also bring relevant information, since, this method
allows extracting salient features from µ and β rhythms.
As expected, the DWT transformation provides a multi-
resolution decomposition, which is able to deal with non-
stationary signals (e.g. EEG). Again, C3 and C4 channels
present higher relevance values than Cz in DWT based
representations. With respect to CWT-based features, mostly,
they do not add relevant information to the system, since
CWT analyzes the signal neglecting possible non-stationary
behaviors. Likewise, Hjorth parameters features attained low-
relevance values in comparison to PSD and DWT based
methods. Nonetheless, the activity parameter of each channel
shows a high relevance. Even when Hjorth estimations are
obtained by a windowing procedure, they characterize the
signal without considering the temporal structure hiding
intrinsic structures in the time domain.

Moreover, from attained performance in the learning
curves, as shown in Fig. 2(b), it can be notice that overall
with the first 15 relevant features an acceptable MI discrim-
ination is obtained for all the subjects. However, some sub-
jects present low classification performances (i.e. B03, B05,
B06), which can be explained by the fact that each subject
presents different cognitive characteristics, not mentioning
the non-stationary nature of the signals. Additionally, the
quality of the EEG trials is perturbed by the artifacts, and
by the brain response capability of each subject. In some
cases, the BCI training curves present a drop when adding
a new relevant feature, and then the classification accuracy
grows up again (see Fig. 2(b)). Above behavior is explained
by the fact that some features may represent highly relevant
attributes, but they involve redundant information. Finally,
according to Table I, most of the classification results for the
9 subjects are acceptable in comparison to state of the art

approaches (Benchmark: mean discrimination performance
for the 9 subjects: 74.26±08.79 [3]). The best discrimination
performances are obtained for subjects B07, B08, and B04.
It should be noticed that the proposed approach allows to
compute stable MI discriminations, as seen from the low
standard deviation values.

V. CONCLUSIONS

This work proposes a feature relevance analysis scheme
aiming to support automatic MI discrimination in EEG based
BCI systems. In this sense, an eigendecomposition-based
method (that is, PCA) is employed to emphasize the best
input attributes, looking for high correlations with principal
components. Thus, our approach searches for a subset of
features preserving, as well as possible, the input data vari-
ability. To model the studied phenomenon, three frequency-
based (PSD, DWT, and CWT) and one time-based (Hjorth
parameters) features are used. Moreover, a soft-margin SVM
based classifier is employed, and the BCI-system is validated
by a 10-fold cross validation methodology. Achieved results
show that the PSD based features can provide better rele-
vance value than the other analyzed features. Furthermore,
DWT attributes also contribute relevant information to the
BCI-system. Overall, the proposed approach allows comput-
ing stable MI discriminations, in comparison with considered
state of the art works.

As future work, further testing of our methodology should
be carried out using other kind of feature representations
clearly dealing with the non-stationarity and non-linearity
of EEG signals. Besides, it should be of benefit to employ
a nonlinear covariance function to compute the relevance
values of the input set of features to highlight hidden
structures of the process.

REFERENCES

[1] R. Leeb et al., “Brain-computer communication: Motivation, aim, and
impact of exploring a virtual apartment,” Neural Syst. and Rehab. Eng.,

IEEE Trans. on, vol. 15, no. 4, pp. 473–482, 2007.
[2] B. Z. Allison et al., “Brain-computer interface systems: progress and

prospects,” Exp. Rev. of Med. Dev., vol. 4, no. 4, pp. 463–474, 2007.
[3] G. Rodríguez and P. J. García, “Automatic and adaptive classification

of electroencephalographic signals for brain computer interfaces,”
Medical systems, vol. 36, no. 1, pp. 51–63, 2012.

[4] R. Corralejo et al., “Feature selection using a genetic algorithm in a
motor imagerybased brain computer interface,” in IEEE EMBC, 2011.

[5] L. Ming-Ai et al., “Feature extraction and classification of mental eeg
for motor imagery,” in Nat. Comp., 2009. ICNC ’09. 5th Int. Conf.

on, vol. 2, 2009.
[6] A. Teixeira et al., “How to apply nonlinear subspace techniques to

univariate biomedical time series,” IEEE Trans. on Instrument. and

Measur., vol. 58, no. 8, pp. 2433–2443, 2009.
[7] G. Pfurtscheller et al., “Mu rhythm (de)synchronization and eeg single-

trial classification of different motor imagery tasks,” Neuroimage,
vol. 31, no. 1, pp. 153–159, 2006.

[8] G. Daza-Santacoloma et al., “Dynamic feature extraction: An applica-
tion to voice pathology detection,” Intel. Aut. and Soft Comp., 2009.

[9] J. Orozco et al., “Automatic selection of acoustic and non-linear
dynamic features in voice,” in INTERSPEECH, 2011.

[10] B. Scholkopg and A. J. Smola, Learning with Kernels. Cambridge,
MA, USA: The MIT Press, 2002.

[11] S. J. Sheather, “Density estimation,” Statistical Sci., vol. 19, pp. 588–
597, 2004.

7071


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

