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Abstract— In this study, a new P300 extraction method
is investigated by using a form of constrained independent
component analysis (cICA) algorithm called one-unit ICA-with-
reference (ICA-R) which extracts the P300 signal based on its
prior temporal information. The main advantage of this method
compared to the existing ICA-based method is that the desired
P300 signal is extracted directly without requiring partial or full
signal decomposition and any post-processing on the outcome of
the ICA before the P300 signal can be obtained. Since only one
IC is extracted, the method is computationally more efficient
for real-time P300 BCI applications. In our study, when tested
on the BCI competition 2003 dataset IIb, the current state-of-
the-art performance is maintained by using the one-unit ICA-R.
Besides that, the ability of the method to visualize P300 signals
at the single-trial level also suggests it has potential applications
in other types of ERP studies.

I. INTRODUCTION

In recent years, a new emerging technology known as
Brain-Computer Interface (BCI) has been developed. This
technology utilizes specific neural signals to facilitate com-
munication and control between humans and computers. One
of the widely used neural signals for BCI is P300, a kind
of event related potential (ERP) which appears as a positive
wave and normally occurs 300 ms after attending to a rare
stimulus. In P300 BCI, it is a requirement to have a fast
and reliable ERP detection response which requires shorter
training periods and instantaneous interaction between hu-
mans and computers. However, detecting a P300 signal
directly from raw EEG is still a challenging task because
of the non-stationarity nature of the signal and the noise
contamination from ongoing background EEG activities. As
a result, this has led to the emergence of research which aims
at finding an effective way to extract P300 signals such that
the background EEG is attenuated and the P300 signal can
be easily detected.

Different types of single-trial ERP extraction techniques
have been proposed over the years. One of the more success-
ful techniques is Independent Component Analysis (ICA).
The ability of ICA in extracting P300 signals has been
successfully demonstrated in [1]. In addition, the application
of ICA has resulted in a remarkable breakthrough in classi-
fication performance for early P300 BCI [2]. However, the
implementation of ICA is impractical for real-time situations
due to the fact that traditional ICA does not extract the
desired ERP in a straightforward manner. After decompo-
sition, it often requires manual selection of the extracted
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source signals [1][3][4] or manipulation of the ICA subspace
[2] before the ERP can be extracted successfully. Hence,
different approaches for guiding the selection have been
proposed to overcome this weakness. One of the increasingly
popular method is constrained ICA (cICA) which extracts
the desired signal by utilizing prior information of the signal
such as the spatial pattern [5] and the time course of the
desired signal [6]. The application of such an ICA with
promising results has been reported in the biomedical signal
processing fields such as artifact rejection [7] and rhythmic
activity [8].

Lately, a similar effort is also proposed for the P300-
BCI speller [9] where a variant of cICA named ICA-with-
Reference (ICA-R) [6] is applied for P300 extraction. In
[9], assuming that a traditional 6 x 6 P300 speller matrix
of characters is used, 12 reference signals are first generated
with rectangular pulses to represent a 250-350 ms time region
of a row/column stimulation in a character signal block.
Twelve independent components (ICs) are then extracted by
performing ICA-R on the given signal block using the 12
reference signals. Since there will be two reference signals
that coincide with the P300 signal waveform from the target
row and column, the extracted ICs that correspond to the
target row and column will contain the P300 signal. Thus,
to identify the target row and column, one EEG epoch
is extracted from each IC according to the onset of the
row/column stimulation it represents. Then, a classifier is
applied for P300 detection. Although the described method
can achieve a decent classification performance in P300
detection and only extract a subset of ICs compared to tradi-
tional ICA-based method, the requirement of applying ICA-
R exhaustively on each testing data makes it less attractive
for real-time BCI applications.

In this paper, we investigate an implementation of the
ICA-R algorithm for P300 extraction that is computationally
more efficient than the one reported in [9]. Firstly, as in
previous implementations, we propose to apply ICA-R only
during the training phase. Secondly, instead of using ICA-
R with 12 reference signals as in [9], which resulted in 10
redundant and unrelated ICs being extracted together with
the target ICs, we propose to use one-unit ICA-R [6] to
extract specifically the P300 IC. This is done by using a
single reference signal to indicate the expected time span
of the target P300 signal. Then, during the detection stage,
assuming that the characteristic of P300 signals does not
change across sessions, the demixing vector obtained from
the training phase is applied on each test data to extract the
P300 signals. The advantages of using the proposed method
are: 1.) Since ICA-R is only performed during the training
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stage, the method is faster than [9], 2.) Given that only one
IC is required to be extracted, the proposed one-unit ICA-R
method requires less computation compared to [9] and other
traditional ICA-based methods, 3.) Since the extraction is
directed at the P300 signal, there is no post-processing step
as in traditional ICA-based method [2][3][4] before an IC
can be used.

II. METHODOLOGY

A. One-unit ICA-with-Reference (ICA-R)

ICA is a type of blind source separation technique
that recovers a set of source signals from a set of mea-
sured signals. It assumes the measured signals, x(t) =
[x1(t), x2(t), ..., xN (t)]T are linear instantaneous mixtures
of source signals, s(t) = [s1(t), s2(t), ..., sN (t)]T , and that
there are equal number of measured signals and source
signals, such that x(t) can be defined as x(t) = As(t)
where A is the mixing matrix. Assuming the source signals
are statistically independent, traditional ICA tries to find a
demixing matrix, W to recover all the source signals such
that the source, s(t) = Wx(t) are maximally independent.
Each resultant source signal is also known as an independent
component (IC). In our case, since only the P300 signal is
of interest, the full ICA decomposition is unnecessary.

Here, a one-unit ICA-R algorithm is chosen to find a
demixing vector, w, such that an IC, y(t) = wT x(t), that
is closest to our desired signal is recovered by incorporating
prior information of the desired signal which is carried inside
a reference signal, r(t). For simplicity of formulation, the
time index, t is omitted in the following.

The cost function of a one-unit ICA-R based on the
approximation of negentropy [10] is defined as [6]:

max
w

J(w) = [E{G(y)} − E{G(v)}]2

s.t. g(w) = ε(y, r)− ξ ≤ 0, h(w) = E{y2} − 1 = 0 (1)

where G(.) can be any non-quadratic function as given in
[10], E{.} is the time average of samples, v is a Gaussian
variable with zero mean and unit variance, g(w) is the
closeness measure between the extracted signal, ξ is the
threshold of closeness measure, y and reference signal, r.
h(w) is the equality constraint which ensures J(w) and w
are bounded.

In this paper, the augmented Lagrangian approach for the
cost function in (1) derived by [6] is applied. The contrast
function, G(y) = log(cosh(y)) is chosen for negentropy
estimation and the mean square error (MSE) is used for
the closeness measure where g(w) = E{(y − r)2} − ξ.
In traditional ICA, the column of a mixing matrix, A =
W−1 usually conveys the topographic information of an IC.
However, this spatial pattern cannot be obtained in one-unit
ICA-R by inverting w. Hence, in this paper, the least square
estimate of a spatial pattern (or mixing vector), a, from an
IC is used:

a =
XyT

yyT
(2)

B. Design of a Reference Signal

The design of a reference signal is crucial when trying
to extract a signal using ICA-R. To ensure the quality of
extraction, the reference signal needs to match the desired
signal as close as possible. One of the commonly used
method is generating rectangular pulses to coarsely represent
the time course of a desired signal [6][7]. In our study,
a similar approach is adopted. First, during training, the
time span of the P300 signal is first decided and adjusted
based on the P300 time region found by the K-means
clustering algorithm which segmented the grand-average of
target minus non-target multi-channel responses into P300
and non-P300 time regions. Then, a reference signal is
generated by using rectangular pulses to represent the time
span of the P300 signal in a target trial. A simple illustration
of the reference signal is shown in Fig. 1. An overview of
the training and testing scheme using the proposed method
as a pre-processing tool is shown in Fig. 2.

III. EXPERIMENTS
A. Dataset

To study the performance of our proposed method, the
BCI competition 2003 dataset IIb for P300 speller is used
[11]. In this dataset, a 6 x 6 matrix comprising 36 characters
was presented to a subject where the subject was instructed
to focus on characters in a word that was given by the inves-
tigator. For each run, each row and column was randomly
intensified for 100 ms followed by a resting period of 75 ms,
resulting in up to 12 different stimulations. Later, a total of 15
runs were performed for each character. When a row/column
highlights a character that the subject is focusing on, a P300
signal occurs in the EEG signal. Hence, the objective in this
dataset is to predict the correct character by identifying the
row epoch and column epoch which contains a P300 signal.

B. Procedures

1) Data preparation: There are in total three sessions of
EEG data in the given dataset. For training, six characters
from the first two parts of Sessions 10 were used. For testing,
the remaining part of Session 10 and 11 were combined to
form Test1 (36 characters) while Session 12 was used as
Test2 data (33 characters). This is so that the results can be
compared to [2] and [9].

2) Training phase: Before training, the two parts in the
training data were combined to form a continuous multi-
channel EEG signal. The training signal was then bandpass-
filtered between 0.1-10 Hz, centered and pre-whitened before
ICA-R was applied to estimate the demixing vector, w.
During training, the extracted IC was segmented into EEG
epochs of 525 ms starting from stimulus onset. Based on the
given class label, a linear SVM classifier [12] was trained on
these EEG epochs which is a vector of 126 time samples.

3) Testing phase: In the testing phase, a P300 signal was
extracted from each test epoch by applying the whitening
vector and demixing vector which were obtained in the
training phase. To predict a character, the classifier was
applied onto the extracted signal. The row and column epoch
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Fig. 1. (a) Generation of rectangular pulses as a reference signal for one-unit ICA-R, (b) P300-BCI interface used in BCI Competition 2003 [11]

Fig. 2. An overview of the training and testing scheme which uses a one-unit ICA-R as the pre-processing tool

with the highest classifier score were chosen to infer the
character. This step was repeated by using different number
of epochs for averaging.

IV. RESULTS AND DISCUSSION

A. Qualitative Examination

Firstly, the reliability of the proposed ERP extraction algo-
rithm for determining the desired P300 IC will be examined
using the data described in Section III. After segmenting
and averaging the ICs from the training and test data for the
target and non-target signals, the averaged signal waveforms
are shown in Fig. 3. It can be seen that each IC from
the three sessions successfully captures the P300 signal in
their respective target epochs. In addition, the normalized
spatial patterns of the extracted ICs from these sessions also
matches with the spatial characteristics of the P300 signal
which has its peak located within the central region. These
results demonstrate the reliability of recovering the desired
P300 signal directly using a one-unit ICA-R with a single
reference signal. Moreover, by using a common demixing
vector estimated from the training session, the algorithm is
still capable of extracting the desired P300 signals across
the other test sessions, demonstrating its robustness. Fig. 4
shows the single-trial target responses from the ICs for
the different sessions. It reveals that the P300 signals are
nonstationary which further explains the need to deploy a
longer rectangular pulse for the reference signal.

B. Quantitative Examination

By applying the training and testing scheme shown in
Fig. 2, it is revealed that the predicted character often
changes between the target character and its surrounding

Fig. 3. Top plot - The P300 time region (Black) on the grand average of
target minus non-target multi-channel responses of training data obtained
by K-means clustering algorithm. Middle plot - Normalized averaged target
and non-target epochs of the ICs extracted by applying whitening vector and
demixing vector on Training data (Solid line), Test1 (Dotted line) and Test2
(Dash-Dotted line). Bottom plot - Normalized scalp pattern corresponding
to the extracted IC from Training data, Test1 and Test2.

characters although the character had been correctly pre-
dicted in an earlier run. This is likely caused by the crossover
of the intensification which affects the neighbouring char-
acters. To reduce this external effect, the sequence of 15
repetition runs were randomized for each character before
the averaging operation. The number of epochs used for
averaging ranges from one to 15 and for each test set,
we generated up to 200 datasets by resampling using the
permutation method taken for each available n-tuple (where
n = 1,2,...,15) set. The resulting classification results using
all 64 channels are plotted in Fig. 5. We achieved a mean
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Fig. 4. Single-trial target responses from extracted IC on (a) Training data
(b) Test1 and (c) Test2 whereby only target responses which had previous
and upcoming two stimulations belong to non-target were used.

Fig. 5. Classification performance on Test1 (Red) and Test2 (Black) based
on BCI competition 2003 dataset IIb with the shaded region represents the
min-max boundary of an accuracy curve.

accuracy performance of 84% (min of 67% and max of
94%), 94% (min of 86% and max of 97%) and 97%1 for
5, 10 and 15-averaged trials respectively for the Test1 data.
This compares favourably with the method using ICA-R with
12 references repetitively reported in [9] with accuracies
of 90%, 96% and 97% over the same number of averaged
trials respectively. On the other hand, when compared to the
traditional ICA-based method used by the winner of BCI
competition 2003 [2], our method requires an average of
8 trials to reach 99% accuracy while the best performance
achieved by [2] is using 5 trials if manual selection of the
starting point is allowed.

C. Computational Analysis

To analyse the computational performance of the different
ICA-based methods, a further test is performed by running
each method on a segment of continuous EEG signals that
is taken from all the four character “A” in Test1. The
reason for this step is that the method in [9] requires its
reference signals to represent only specific target row/column
stimulations. The resulting EEG segment consists of 64
channels and 32110 time samples. The tested methods are
(1) one-unit ICA-R, (2) ICA-R with 12 references [9] and
(3) Infomax-ICA [13] (to represent traditional ICA). The
CPU is an Intel Xeon E3-1230 processor running at 3.2
GHz with 8GB RAM. The time taken for one unit ICA-R,
ICA with 12-references and Infomax-ICA in P300 extraction
after 50 iterations are 0.33 s ± 0.01 s, 3.02 s ± 0.05 s

1No min-max accuracy figure since all available 15 epochs were used

and 58.06 s ± 13 s respectively. It can be clearly seen that
computational time increases whenever the partial and full
signal decomposition step are required as in [9] and the
traditional ICA-based method. In contrast, since only one
IC is extracted, the one-unit ICA-R is the most computation
efficient of the three methods.

V. CONCLUSIONS

A P300 extraction method using one-unit ICA-R is in-
vestigated for P300-BCI and tested against existing ICA-
based methods on the publicly available P300 speller dataset.
Compared to [9], our results showed that fast and reliable
P300 extraction can be achieved by using demixing vector
from one-unit ICA-R in the training stage without exhaus-
tively applying ICA-R with 12 references onto every single
test data. Besides that, since only the desired P300 IC is
extracted, the one-unit ICA-R requires less computational
time compared to any existing ICA-based method while
maintaining the current state-of-the-art classification perfor-
mance. In addition, the ability of the method to visualize
signals in the single-trial level also suggests it has potential
applications in other types of ERP studies.
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