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Abstract— Brain-computer interfaces (BCI) utilizing steady-
state visually evoked potentials (SSVEP) recorded by elec-
troencephalography (EEG) have exciting potential to enable
new systems for disabled individuals and novel controls for
robotic and computer systems. To interact with SSVEP-based
BCIs, users attend to visual stimuli modulated at predetermined
frequencies. A key problem for SSVEP-based BCIs is to classify
which modulation frequency the user is attending, for which
there is an inherent trade-off between speed and accuracy. As
SSVEP signals vary with time and stimulation frequency, a
fixed-length data window does not necessarily optimize this
trade-off. We propose a strategy, developed from sequential
analysis, to vary the window-length used for classification.
Our proposed technique adapts to the data, continuing to
collect data until it is confident enough to make a classification
decision. Our strategy was compared to a fixed window-length
method using a simple experiment involving five frequencies
presented individually to three participants. Using a canonical
correlation analysis classifier to compare the proposed variable-
length scheme to a standard fixed-length scheme, the variable-
length approach improved the classifier information transfer
rate by an average of 43%.

I. INTRODUCTION

The direct classification of neural signals for the ben-

efit of those with motor impairments or as an alternate

input modality has intrigued researchers since first proposed

more than 40 years ago [16]. Using electroencephalography

(EEG), researchers have continued to develop brain computer

interfaces (BCI) for communication and control, effectively

translating electrical brain activity into artificial commands.

One class of BCI systems, based on steady-state visually

evoked potentials (SSVEP), relies on the brain’s response to

repetitive visual stimuli in the user’s environment [13]. These

stimuli, such as a flashing LED or computer screen, cause an

entrainment between populations of neurons and the stimuli

that can be selectively modulated through the allocation of

attention [11]. Based on the neural signatures measured by

EEG, this allocation of attention can be classified, effectively

allowing the user to control the input of a computer system

without the need for motor interaction. The BCI devices

based on this paradigm have enabled text communication

for disabled individuals [17], been demonstrated for use in
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robotic navigation tasks [1], and have been used as inputs

for computer games [8].

Despite the promise demonstrated using these techniques

their utility remains limited for several reasons, including:

their reliability [2], ease of use, and overall system per-

formance [12]. Considering the third of these three limita-

tions, BCI systems are commonly compared based on their

Information Transfer Rate (ITR), measured in bits/second

[15]. Since ITR is a function of accuracy, latency, and the

number of classes, various schemes for improving bitrate can

be imagined. For instance, an easy way to improve overall

information throughput is to increase the number of classes

available to the user. Even if classification is relatively slow,

a high ITR can be obtained from a system with 48 classes

[5]. Another approach is to improve the speed and accuracy

of classification.

Several classification methods currently dominate SSVEP-

based BCI systems, including: Power Spectral Density Anal-

ysis (PSDA), Minimum Energy Combination (MEC) [4],

and Canonical Correlation Analysis (CCA) [10]. In order

to classify which of several frequencies a user is attending

to, these classifiers wait for a fixed length of input EEG data

before making a decision. This “window-length” is chosen

a priori by the system designer and represents a trade-off

between classification speed and accuracy.

However, there is no basis for assuming the window

length must be fixed. Sequential analysis [9] provides a

framework that makes selecting the stopping time (i.e.,

choosing the window length) a part of the classification

task. This methodology is commonly used in a wide range

of applications including medical diagnostics and quality

assurance in manufacturing. Straightforward application of

the sequential probability ratio test (SPRT) [18] (a standard

sequential procedure), to SSVEP classifiers is not immedi-

ately obvious due to the lack of appropriate signal models.

In this paper we propose a sequential test which is

performed directly in the classifier-feature space. This test

accounts for the classification rule, does not require modeling

assumptions, and can handle nonlinear feature mappings.

We develop our variable-length window method for the

CCA classifier presented in [10], although the methodology

outlined in this paper may be extended to other existing clas-

sification methods. We demonstrate, based on a comparative

study with a traditional CCA algorithm, that our variable-

length window method allows for classification on a short

window-length when signal quality is high, and automati-

cally waits for more data when signal quality is low. This

sequential approach is shown to uniformly outperform a fixed
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Fig. 1. Plots of the CCA classifier decision rule for data of increasing
window lengths. Test data with f1 = 6 Hz and f2 = 8.57 Hz were divided
into three different lengths. As window length increases, the discriminability
of the two classes increases considerably.

window-length method in terms of ITR and classification

accuracy.

II. METHODOLOGY

In this section, we first introduce notation for the CCA

classifier [10], which is then used to develop the proposed

variable-length window method.

A. Stimulus-Frequency Classification using CCA Features

The goal of the classification algorithm proposed in [10]

is to infer the input frequency from multi-channel EEG data:

1) Assume there are K possible stimulus frequencies and

N EEG channels.

2) The window length is assumed to be L samples long,

which is L/Fs seconds, where Fs is the EEG sampling

rate.

3) For a given stimulus frequency, CCA coefficients

are computed using L samples from each of the N
channels. The data are represented by a matrix X of

dimension L×N .

4) The largest CCA coefficient, defined to be ρ(X; f) [6],

is used as the feature for classification:

f∗ = argmax
f
ρ(X; f), f = f1, . . . , fK (1)

where f∗ is the classified frequency.

B. A Sequential Approach to a Variable-Length Window

The proposed sequential test essentially uses all of the

data collected thus far to decide whether or not to continue

collecting more data. To avoid requiring any additional

assumptions about the data model, we develop a sequential

test directly on the CCA feature space. This allows for

direct comparison between the variable-length window and

standard CCA classification.

The decision to continue collecting data depends on the

current level of confidence as to which class the data belongs.

The classification strategy in (1) for two classes f1 and

f2 (i.e., K = 2) is shown graphically as the solid line

in each subplot of Fig. 1. Each subplot corresponds to a

different window length L, and each sample corresponds to

the features extracted from an L×N block of raw EEG data.

All features lying above this line are classified as f2, and all

features below it are classified as f1. Thus, the classification

boundary can be expressed as a hyperplane, h. Given the

features of a data block (ρ1 and ρ2), the distance from the

classification boundary, which expresses one’s confidence, is

given as the distance from the hyperplane:

d(ρ1, ρ2) =
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As shown in the sequence of scatter plots, when the

window-length L increases, the confidence for every point

also increases. This behavior has been quantified in the

related problem of detecting a sinusoidal signal in Gaus-

sian noise, where the Chernoff distance between the null

and alternative densities (or more generally the deflection

coefficient) increases by a factor of
√
L [9].

The key idea of our approach is that even when L is small,

there are some samples that could be classified correctly with

high confidence. Identifying these samples and classifying

them early may help to reduce the effective window length,

when averaged over time.

Given a current window length L and data X (of dimen-

sion L×N ), we propose the following sequential test:

Require: confidence threshold, τ
Output: classification result, f∗

1: procedure VARYWINDOWLENGTH(L, X)

2: if d(ρ(X; f1), ρ(X; f2)) < τ then

3: L← L+B ⊲ increase window length

4: X ← [X;XB ] ⊲ augment new data

5: return VaryWindowLength(L,X) ⊲ repeat

6: else

7: return f∗ from (1) ⊲ classification task

Here, B is defined to be a step-size, which is a basic unit of

growth, and XB is the data matrix that corresponds to the

new B samples for each of the N channels. The classification

task is carried out only when the minimum distance from

the boundary is satisfied; until then, the window length is

incrementally increased.

The threshold τ controls the trade-off between classifi-

cation performance and average speed. In practice, choos-

ing the threshold should be done a priori, and is exactly

analogous to how window-length is chosen in a fixed-length

strategy. Although the procedures are similar, the impact

is quite different, as our variable-length strategy will be

able to make classifications early, with minimal effect on

performance. In fact, a fixed-length strategy is actually a

special case of our proposed algorithm, with τ = 0, and

the initial L chosen to be the fixed window-length.

Finally, note that we focus on binary classification for

the remainder of the paper. The generalization (K > 2) is

a straightforward extension using the geometric hyperplane

interpretation, and will be explored in a forthcoming paper.

III. EXPERIMENTAL SETUP

A. Subjects

Experiments were conducted at the University of Illinois

BCI lab on the authors. A James Long 128 channel EEG
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TABLE I

PERFORMANCE OF 3 SUBJECTS FOR FIXED-LENGTH AND VARIABLE-LENGTH WINDOW

CCA (fixed-length window) CCA (variable-length window)
Participant Accuracy (%) AWL (s) Max ITR (bits/s) Accuracy (%) AWL (s) Max ITR (bits/s) % Max ITR Improvement

A 94% 0.75 0.92 96% 0.62 1.24 35.3%
B 90% 0.58 0.96 94% 0.48 1.44 49.8%
C 88% 0.44 1.09 95% 0.48 1.59 45.2%

Average 91% 0.59 0.99 95% 0.53 1.42 43.4%
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Fig. 2. Classification accuracy vs average window length for all three subjects averaged over 10 two-class comparison cases. For the fixed-length window,
the performance curve is generated by changing the length of the fixed window. For the variable-length case, the performance curve is generated by
altering the decision threshold. These curves were then linearly interpolated and averaged together across all 10 comparisons. For all three subjects, the
variable-length window performs uniformly better, and approaches the performance of the fixed-window only for low average window lengths.

amplifier was used in conjunction with a National Instru-

ments DAQ to digitize EEG signals at 128 Hz. The data

were pass-band filtered from 1 – 30 Hz by the amplifier.

EEG data were monitored during experimentation and logged

by BCI2000 [14]. Participants were seated in a comfortable

chair at 65 cm from a 24-inch BenQ XL2420T computer

monitor. Scalp recording impedances were kept under 10kΩ
from sites (PO7, PO3, PO4, PO8, O1, OZ, O2) based on the

10-5 international system [7].

B. Stimuli and Procedure

Stimuli were implemented as a script in MatLab in con-

junction with the Psychophysics Toolbox [3]. The experiment

consisted of six blocks of stimuli (6 Hz, 6.67 Hz, 7.5 Hz,

8.57 Hz, 10 Hz, and Null). During a block, a single stimulus

of a given frequency was presented to the participant. The

stimuli within each block were not randomized for this study

as the emphasis was on a direct comparison between the two

algorithms. Each stimulus was a square of identical size,

subtending an angle 3.5◦ from fixation in each direction.

Each block was composed of 20 trials each 15 seconds in

length. At the beginning of each block, the participant was

instructed to focus his attention on the center of the flickering

stimuli for the entire duration of the trial. There was a

three-second interval between each trial. Stimulus onset was

captured with a photodiode linked directly into the DAQ.

C. Analysis Techniques

All analyses were conducted offline following each exper-

iment in the MatLab environment. In order to quantify the

difference in performance between the fixed-length window

and our proposed variable-length window, the strategies were

tested using a set of two-class classification problems. To

form the two-class problems, each stimulus frequency was

compared, one at a time, against all other frequencies. This

gave a total of 10 comparisons for each of the three subjects.

For each two-class problem, 20 trials of each frequency

formed the testing dataset. Each two-class problem, there-

fore, had 10 minutes of testing data. A two-class CCA

classifier was applied to the testing dataset, using both a

fixed-length and variable-length window strategy.

D. Parameter Selection

Performance for the fixed-length window strategy was

tuned by modifying the window length. The window length

varied from 1/8 seconds to 1 second with 1/16 second

steps. Changing the length of the fixed-length window trades

off between decision speed and decision accuracy. For the

variable-length strategy, the minimum block length was set

at 1/8 second. To tune performance of the variable-length

strategy, the threshold τ was varied from 0 to 0.3 in steps of

0.01. Varying the threshold trades off between classification

speed and accuracy.

IV. RESULTS

For both fixed-length and variable-length strategies, the

percent accuracy, average window-length (AWL), and ITR

was calculated and averaged over all 10 two-class com-

parisons. The maximum ITR for each subject is reported

in Table I for both fixed and variable-length strategies.
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The variable-length approach increases ITR by an average

of 43% over all three subjects. For our subjects, using a

variable-length strategy is an effective way to improve the

performance of a CCA classifer.

In addition to the parameter configuration that maximizes

ITR, it is possible to trace out the performance trade-off

between classification accuracy and average window length

for the two strategies. The results are summarized in Fig. 2.

For all three subjects, the classification performance curves

for the variable-length window exceeds the curve for the

fixed-length window. As the threshold for the variable-length

window is lowered, it approaches the performance for the

fixed-length window.

V. DISCUSSION

The maximum ITR achieved by each of the three subjects

in the variable-length window exceeded the performance

of the fixed-length window. This is very encouraging, and

shows uniform improvement of our variable-length approach.

Performance numbers, however, are derived from idealized

comparisons of ITR and are not directly comparable to per-

formance numbers from real-time BCI systems. The relative

improvement of the variable-length approach does suggest

that incorporating this strategy will improve performance.

Using this simple experimental data and CCA classifi-

cation, the comparisons of fixed-length and variable-length

windows validate the intuition for applying sequential anal-

ysis. Because the quality of the data varies with time, a

variable-length window can exceed the performance of a

fixed-length window. We hypothesize that the variable-length

strategy can be applied to other SSVEP classifiers, such

as PSDA and MEC [4], provided the performance of the

classifier improves as a function of the length of data used

to classify.

Although the results in this study only consider the two-

class case, the variable-length strategy can be extended

to the multiple-class case. For CCA, this would involve

finding the CCA correlation for each frequency of interest.

These features would form an n-dimensional hypercube, with

hyperplane decision boundaries.

Finally, this study does not apply any channel selection

or denoising techniques. Again, this is because these results

demonstrate the relative improvement of applying a variable-

length window in place of a fixed-window, not an absolute

performance metric.

VI. CONCLUSION AND FUTURE WORK

Since SSVEP signals vary with time, conditions, and

stimulation frequencies, fixed-length windows are not nec-

essarily optimal. This work proposed a variable-length win-

dow method for classification using CCA for SSVEP-based

BCI. Our intuition about performance varying over time is

consistent with the obtained results. In particular, a variable

window-length strategy is shown to be uniformly better

than a fixed window-length strategy, resulting in an average

ITR improvement of 43%. As demonstrated, our proposed

approach does not require any additional assumptions or

signal models relative to existing CCA-based classifiers.

One implication of the achieved performance improvement

is that faster, more accurate classification may improve the

overall usability of SSVEP-based BCI systems. This may

be particularly important for long-term applications, where

attention and signal quality is expected to vary greatly due

to effects such as fatigue and variable recording conditions.

As our approach naturally lends itself to extensions, further

studies will consider multiple classes and other classification

algorithms. Although current results demonstrate the relative

improvement of the variable-length strategy over the fixed-

length strategy, they do not yet demonstrate the performance

of a real-time BCI system; future work will explore the

efficacy of this approach for online BCI tasks.
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