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Abstract—An electroencephalogram (EEG)-based brain 

computer interface (BCI) is a novel tool that translates brain 

intentions into control signals. As the operational dimensions of 

motor imagery are limited, we describe in this paper an 

extension of its capability by including speech imagery. Our new 

system was tested with the help of subjects, whose native 

language is Chinese. The tests were divided into two steps. The 

first step was speech imagery; consequently motor imagery and 

speech imagery were merged in the second step. Feature vectors 

of EEG signals were extracted from both common spatial 

patterns (CSP) and cross-correlation functions; then these 

vectors were classified by a support vector machine (SVM). The 

distinguishing accuracies of two intentions were found to be 

between 79.33% and 88.26%. This result shows that the 

capability of BCI for motor imagery can be extended by 

combining motor imagery and speech imagery. 

I. INTRODUCTION 

Recently, brain-computer interface (BCI) technology 
based on classifying single trial electroencephalography 
(EEG) signals has been paid more attention by the researchers. 
Due to the function of exchanging information with the 
external world feasibly, this technology has been introduced 
in the state-of-the-art medical devices for motor dysfunction 
[1], such as amyotrophic lateral sclerosis (ALS) and traumatic 
brain injury. Many BCI systems, which are based on neuronal 
activities, are implemented by classifying EEG signals during 
motor imagery, e.g. imagining the movement of hand, foot and 
tongue [2]. These different imagined movements indicate the 
different spatial distribution of EEG (mainly are mu and beta  
rhythms) appearing on the contralateral hemisphere. These 
rhythms can be used to explained specific energy change of 
event-related desynchronization/synchronization (ERD/ERS) 
[3]. 

The maximum dimensions of BCI based on motor imagery 
is four[4]. However, with the increase of dimensions, training 
time will be extended and the classification accuracy will be 
reduced. In order to extend the dimensions of BCI based on 
motor imagery, other imagine paradigm ,e.g. speech imagery 
is proposed. Eric C Leuthardt had used electrocorticography 
(ECoG) speech network to control a BCI [5]. In his study, the 
letters of the alphabet, including OO, EE, AH and EH, were 
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selected as materials of the speech imagery. Charles S. 
DaSalla proposed /a/ and /u/ as vowel speech imagery for 
EEG-based BCI [6]. In Data set V of BCI Competition III [7], 
mental imagery is classified into 3 categories: left hand motor 
imagery, right hand motor imagery and word association. The 
first letter of the words should be kept same in the word 
association. Most of English words are polysyllabic, which 
are more complicate in the application of BCI comparing with 
letters of the alphabet and vowels. 

Based on the above reasons, the speech imagery according 
to Chinese characters is proposed to extend motor imagery 
BCI systems in this paper. Different from English words, the 
correlation between the shape and the meaning of Chinese 
characters (a kind of  ideographic language ) is closer than that 
between the shape and sound. Furthermore, Chinese 

characters are monosyllabic pronunciation, e.g. “左 ” is 

pronounced as “zuo” in third tone, which means “left” in 

English; “壹” is pronounced as “yi” in first tone, which means 

“one”; “移” is pronounced as “yi” in second tone, which 

means “move”.  

A specific rhythm , such as mu and beta rhythms linking to 
ERD/ERS of motor imagery, can be captured as a strong or 
attenuated activity using a bandpass-filter. The method of 
common spatial patterns (CSP) is an advanced feature 
extraction algorithm for extracting discriminant spatial 
features of EEG. It constructs spatial filters to maximize the 
variance for one class of imagery and to minimize the variance 
for the other one simultaneously. Based on rhythm modulation, 
the result of EEG synchronization in different cerebral cortex 
can be regarded as the feature value in the BCI systems. 
Cross-correlation function is an appropriate algorithm of EEG 
synchronization. Because the energy characteristics and 
synchronization of EEG are different and independent in the 
physiological mechanism, both CSP and the cross-correlation 
function are used to extract the eigenvalues of EEG 
respectively. The extracted eigenvalues are classified by 
support vector machine (SVM). 

II. METHODS 

A. Data Acquisition 

Six Chinese, right handed students (four males and two 
females) of Southeast University participated in the no 
feedback experiment. Their ages are from 22 to 27 with the 
average of 23.33. All of the students didn’t attend similar 
experiment before. They were explained the purpose the 
procedure of the experiment and signed the Informed 
Consent. The experiment was under the guidance of the 
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Academic Ethics Committee. The experiment data were 
recorded by a SynAmps 2 system (Neuroscan Co., Ltd.). 

This experiment was divided into two steps. The subject 
performed speech imagery according to the training paradigm 
in Fig. 1(a) firstly. Then he/she performed both motor imagery 
and speech imagery following the training paradigm in Fig. 
1(b). In the first step, 15 EEG channels (the left of Fig. 2) are 
used to cover the positions involving the Broca's area and 
Wernicke's area. In the second step, 35 EEG channels (the 
right of Fig. 2) cover the cerebral cortex including the Broca's 
area, Wernicke's area, primary motor area (M1) and 
supplementary motor area (SMA). To measure the influence 
of ocular artifacts, the electrooculogram (EOG) (horizontal 
and vertical pairs) was also recorded. Channel-level 
preprocessing was performed before applying the EOG 
correction, referencing the signals to left mastoid and 
grounding the signals to forehead. Signals were sampled at 
250Hz, and preprocessed by a 0.1-100Hz band-pass filter. 

B. Experimental Paradigm 

The training paradigms of two steps are almost identical 
except the “Cue” in Fig. 1. The “Cue” is a Chinese character, 

such as “左” or “壹” in Fig. 1(a) and is a Chinese character 

“移”  or an arrow in Fig. 1(b). Timing of training paradigms is 

shown in Fig. 1. To start with each trial, a fixed cross is 
displayed with black background, which is ready period of 1 s. 
After the ready period, a “Cue” appears for 1 s on the screen. 
In the next 4s, the subject is required to keep reading the 
Chinese character in mind or imagining his/her hand 
movement according to the content of “Cue”. The subject 
can't move lip or make a sound when the “Cue” is a Chinese 
character and he/she also can't move his/her hands when the 
“Cue” is an arrow. In order to prevent the subject adapting this 
experiment, a fixed asterisk with black background is 
displayed for 2~3 s to suggest the subject have a rest after the 
imagery period is finished. Each step of the experiment 
includes 5 runs and each of cues is randomly displayed 15 
times in each run. Between each run, the subject may have a 
break of 5 minutes.  

 

Figure. 1  (a) Timing of a trial of the first step training paradigm. 3~5 s of 
every trial, and 2 s of relax period before imagery period of each Chinese 
character is regarded as Rest. These two fragments of EEG signals are 
calculated by CSP spatial filter and cross-correlation function. (b) Timing of 
a trial of the second step training paradigm. EEG signals from 3~5 s of every 
trial are calculated by CSP spatial filter and cross-correlation function. 

 

Figure. 2  Position of EEG electrodes. Left electrode setup has 15 channels 
for the first step and the right one has 35 channels for the second step. These 
electrode positions of both setups correspond to the international 10–20 
system. 

C. Feature Extraction 

As EEG signals mainly distribute in the alpha and beta 

wave, signals are filtered by band-pass zero-phase filter at a 

range of 6-30 Hz before analysis and classification of EEG.  

1). Common Spatial Patterns (CSP) 

CSP is a supervised method to extract the task related 
components. The signal-to-noise ratio of EEG can be 
improved effectively by this method. As the result of 
simultaneous diagonalization of the two corresponding 
covariance matrices, two different imagery categories of EEG 
signals are projected into low-dimensional spatial subspace by 
CSP spatial filters. The variance of two types of EEG signals 
matrices can be maximized by this transformation. According 
to the two tasks shown in Fig. 1, EEG signals can be modeled 
as the combination of specific components and common 
components. More detail of CSP is referenced to [8]. The best 
projection matrix W is calculated by CSP, and W

-1 
is the 

inverse matrix of W. The columns of W
-1

 are common spatial 
patterns. 

Fig. 3 shows the four most significant common spatial 

patterns from the result of  “壹 (one)” versus Rest. As the 

weight values of the common spatial patterns of “壹 (one)” 

versus Rest are larger than those of “左 (left)” versus “壹 

(one)”, it can be speculated that it is harder to distinguish 
which Chinese character is read in mind than to distinguishing 
whether subjects are reading one character. This speculation is 
coincident with subsequent results. 

 

Figure. 3  The “壹 (one)” versus Rest topographic maps of four most 

meaningful common spatial patterns are obtained by CSP for subject S2. (1), 
(2), (3) and (4) of each subgraph are the four spatial patterns. 
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The mapping of each trial can be converted into Z=WX (X 
is the EEG signal). First m columns and last m columns of the 
Z matrix are used for the construction of the classifier. Then 
the feature vectors fp can be calculated from signals Zp (p = 
1…2m) as (1). The typical number of m is 2. 
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2). Cross-correlation Function 

EEG synchronization phenomenon is the important 
performance [9], which considered as functional collaboration 
and integration of different brain regions to complete the 
cognitive behavior. To improve the accuracy of classification, 
it's appropriate to extract feature values of the EEG 
synchronization in different cerebral cortex for BCI systems. 

The methods of the analyzing EEG synchronization 
include cross-correlation function, coherence function and 
phase synchronization [10] et.al. The cross-correlation 
function is the simplest method  and suitable for real-time BCI 
systems. EEG synchronization is analyzed by this method in 
this paper. The cross-correlation function is defined as follow: 
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      Two EEG signals are set as xi and yi, i=1,…, N. x  and y   

are the mean of x and y. 
x and 

y  are the corresponding 

standard deviation. τ represents a time-shift. The measure of 

the linear synchronous between x and y is given by 
cross-correlation function cxy. The range of the 
cross-correlation function is [0 1], in which 0 indicates that 
there is no synchronization between the x and y, and 1 
represents the greatest degree of synchronization. 
Cross-correlation are calculated for the channels F3, F5, F7, 
FC3, CP3, CP5, CP7 and P7 pair to pair. These channels are 
near the Broca's area and Wernicke's area, which have close 
relationship with speech imagery. The result of one subject 
(S3) is shown in Fig. 4. The cross-correlations of F5-CP5 and 
F3-CP3 increase significantly when the subject reads a 
Chinese character. 

D. Feature Classification 

The feature vectors of EEG are classified by the support 
vector machine (SVM), which is based on statistical learning 
theory. It solves the problem of searching a hyperplane to 
separate the training data X with labels Y. LIBSVM [11] with 
radial basis kernel is selected in this paper because of its wide 
application.  

III. RESULTS 

As shown in Fig. 5, for EEG signals of speech imagery in 
the first step, two fragments of signals will be analyzed. One 
fragment data has 2 s time period, from 3 s to 5 s of every trial 

 

Figure. 4  The values of cross-correlation are calculated from average of 75 

times for subject S3. τ  is set to 0. “Rest 1” is corresponded to “左(left)” and 

“Rest 2” is corresponded to “壹(one)”. 

 

Figure. 5  (a) Flowchart of experimental paradigm. (b) Flowchart of EEG 
data processing 

in Fig.1(a), and another one is 2 s of relax period in Fig.1(a). 
After filtered by CSP spatial filters, four feature values are 
extracted by (1). At the same time, the channel pairs of 
F3-CP3, F5-CP5, F3-F5, and CP3-CP5, near the Broca's area 
and Wernicke's area, are selected to calculate EEG 
synchronization phenomenon between these two areas. Four 
feature values are extracted by (2). As EEG signals between 

two channels are linearly related, τ  is set to 0. Table I 

presents the accuracy that calculated by 10×10 
cross-validation. This method randomly splits the data into ten 
parts, and nine of which are used to train the classifier and the 
remaining one is used to test it. This process is repeated ten 
times. 

As shown in Table I, it is hard to separate which Chinese 
characters is read, but it is still effective to distinguish whether 
subjects are reading a character in mind. In order to compare 
with the combined algorithm, feature vectors are extracted by 
CSP and the cross-correlation function respectively. Three 
average results of the combined algorithm are 85.39, 85.51 
and 66.08. They are better than the average results of CSP, 
which are 83.92, 83.51, and 66.22. They are also better than 
the average results of the cross-correlation function, which are 
79.54, 77.46 and 59.4. As language and motor are processed 
by different cerebral cortex, speech imagery and motor 
imagery are classified in the next part of paper. 

First step: Speech imagery 

Second step: Extend motor imagery by speech imagery 

EEG data 

Bandpass 

filtering 

CSP 

Cross-correlation 

Function 

SVM 

(a) 

(b) 
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TABLE I.  THE CLASSIFICATION RESULT OF SPEECH IMAGERY 

Subject Accuracy±std (%) 

“左”(left) vs 

Rest 

“壹”(one) vs 

Rest 

“左”(left) 

vs“壹”(one) 

S1 78.67±1.46 79.33±0.89 64.67±1.29 

S2 89.46±1.91 91.86±0.73 68.74±1.26 

S3 80.06±0.79 79.2±1.12 66.81±2.77 

S4 93.53±0.72 94.67±0.78 61.27±1.61 

S5 83.12±1.42 81.83±1.61 69.87±1.73 

S6 

Mean 

87.33±0.54 

85.39 
86.19±1.21 

85.51 
65.13±2.83 

66.08 

 

In order to compare disparity of different channels 
between speech imagery and motor imagery, event-related 
spectral perturbation (ERSP) is plotted by EEGLAB [12]. 
ERSP is superposition of single trial energy spectrum 
distribution. As channel C3 and F3 are close to the primary 
motor area of left brain and the Broca's area separately, ERSP 
of these two channels from subject S2 are plotted in Fig. 6 
respectively. 

As shown in Fig. 6, 5-12Hz EEG of channel C3 is 
displaying ERD when subject S2 is imagining right hand 
movement and the energy of 10-15Hz EEG from channel F3 

increased when he is reading “移 (move)” in mind. EEG data 

processing is similar with the first step, and it is also better to 
combine CSP and cross-correlation function than single 
algorithm. The results of combination are shown in Table II. 
Besides channels F3, CP3, F5 and CP5, the channel pair of 
C3-FCz and C4-FCz are selected to calculate synchronization 
phenomenon between M1 and SMA [13]. Two average 
accuracies of speech imagery vs motor imagery are better than 
left vs right (see Table II). The result indicates that it is 
necessary to improve the accuracy of motor imagery by 
long-term training. 

IV. CONCLUSION 

In day-to-day life, it's common to utilize both real and 
imagined speech by an individual. So a more easily operable 
paradigm can be offered by using speech imagery for BCI 
systems. Motor imagery can be extended by speech imagery 
using one Chinese character without long-term training. In our 
future work, the separation of reading two Chinese characters 
in mind will be improved by utilizing more appropriate 
algorithm. The comparison between speech imagery, motor 
imagery, and speech+motor imagery will also be studied. 

TABLE II.  THE CLASSIFICATION RESULT OF EXTENDING MOTOR 

IMAGERY BY SPEECH IMAGERY 

Subject Accuracy±std (%) 

Left vs Right Left vs“移”(move) Right vs“移”(move) 

S1 

S2 

81.13±0.89 

74.64±2.94 

82.52±1.03 

79.33±1.86 

80.86±2.22 

80.53±2.26 

S3 

S4 

77.33±1.54 

76.6±2.46 

84.76±2.03 

86.67±1.67 

85.33±2.13 

87.47±1.63 

S5 

S6 

Mean 

71.53±0.73 

74.4±1.22 

75.94 

88.26±0.92 

83.28±0.89 

84.14 

82.67±1.05 

86.13±1.32 

83.83 

 

Figure. 6  ERSP of two types of imagery from channels C3 and F3 for subject 
S2. Bootstrap significance level is 0.01, and t=0 s is corresponded to t=1 s in 
Fig. 2, when the cue appears. The horizontal axis represents time and the 
vertical axis represents frequency. 
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