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Abstract— Brain Computer Interfaces (BCIs) are systems
that allow human subjects to interact with the environment
by interpreting brain signals into machine commands. This
work provides a design for a BCI to control a humanoid
robot by using signals obtained from the Emotiv EPOC [11], a
portable electroencephalogram (EEG) device with 14 electrodes
and sampling rate of 128 Hz. The main objective is to process
the neuroelectric responses to an externally driven stimulus
and generate control signals for the humanoid robot Nao
accordingly. We analyze steady-state visually evoked potential
(SSVEP) induced by one of four groups of light emitting
diodes (LED) by using two distinct signals obtained from the
two channels of the EEG device which reside on top of the
occipital lobe. An embedded system is designed for generating
pulse width modulated square wave signals in order to flicker
each group of LEDs with different frequencies. The subject
chooses the direction by looking at one of these groups of LEDs
that represent four directions. Fast Fourier Transform and a
Gaussian model are used to detect the dominant frequency
component by utilizing harmonics and neighbor frequencies.
Then, a control signal is sent to the robot in order to draw a
fixed sized line in that selected direction by BCI. Experimental
results display satisfactory performance where the correct
target is detected 75% of the time on the average across all
test subjects without any training.

I. INTRODUCTION

Electroencephalogram (EEG) based Brain Computer Inter-
face (BCI) technology is a field of research which grows in
an expeditious manner due to the usability and cost effective-
ness of EEG as compared to other brain activity monitoring
techniques. The advances in computer technology, mechanics
and electronics lead the development of humanoid robots
which can perform many skillful tasks such as manipulating
objects and servicing. EEG based BCI applications provide
a link between the thoughts of a person and these skillful
robots without any physical contact. There are various BCI-
based control systems for robots using different brain signals
obtained from EEG, such as Event Related Potential (ERP)
for humanoid robot walking, steady-state visually evoked
potential (SSVEP) for manipulating table-top objects [1],
P300 evoked potential for robot navigation [2], controlling a
virtual hand [10] and manipulation of objects [12].

Previous works on using EEG devices for BCI vary
according to the used EEG device, which are often not
portable and have a large number of channels with high
sampling frequencies. The main objective of SSVEP based
BCI’s is to determine control signals from the EEG data,
but the response to a stimulus can change from user to user.
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In order to reduce personal differences, previously proposed
systems [4] [3] require some training. The training results are
used to determine user specific flicker frequency, amplitude
threshold or FFT window size.

In this study, we use SSVEP signals to control a humanoid
robot to draw a square. Our aim is to eventually develop a
platform to help disabled people to communicate with home
assistant robots or other machines. SSVEP is chosen due to
its many benefits over other systems, one of which being
its high information transfer rate (ITR) with little or no
user training. Our proposed BCI employs a portable EEG
device since its design is suitable for public usage and has
advantages such as low cost together with higher levels of
user comfort. We did not prefer to use Emotive cube interface
since it requires long training sessions and high concentration
of the user. However, since the device has low sampling
rate and noisy sampling which result in weak responses to
the stimuli, we use LEDs to generate stimuli instead of a
computer monitor in order to improve the system perfor-
mance. We propose a Gaussian model solution to calculate
a weighted sum for each frequency by considering neighbor
frequencies and harmonics to eliminate the aforementioned
problems to a degree without any training.

The organization of the rest of the paper is as follows.
In Section II we describe the robotic platform used. The
experimental setup is given in Section III. In Section IV the
approach for the collection and analysis of the data are given.
The experimental results obtained and their discussion are
given in Section V. Finally, the conclusions and suggested
future work are given in Section VI.

II. THE HUMANOID ROBOT NAO

Nao is a programmable, 57-cm tall humanoid robot with
25 degrees of freedom (DOF) whose key elements are
electric motor actuators and various sensors[6]. A schematic
diagram of the robot can be seen in the Fig.1.

Fig. 1. Humanoid Robot Nao[7]
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For the Nao to draw the lines of a square, joint angles for
each position are determined using the Choreographe soft-
ware that lets users create and edit movements of the robot;
it is designed and developed by Aldebaran Robotics [8].
Drawing actions are implemented using the code of Cerberus
which is the Robocup SPL Team of the Artificial Intelligence
Laboratory at the Department of Computer Engineering at
Bogazici University [14]. In our system, the Nao waits for
a message from the BCI and draws one of the lines of the
square according to the determined direction as seen in Fig.2.

Fig. 2. Nao Drawing a Line of the Square

III. DESIGN OF THE EXPERIMENTS

The general control flow of the proposed BCI system can
be seen in Fig.3.

Fig. 3. BCI Control Flow Diagram

A. Experiment Setup

Initially, we considered setting up a stimulus system using
a computer monitor but it limited the range of frequencies
that can be used for stimulation due to the refresh rate
of 60 Hz (or rates within the neighborhood of 60 Hz)

on most modern monitors. The setup was changed after
considering the results of a survey of stimulation methods
used in SSVEP-Based BCIs; it shows that the systems
that use LEDs instead of LCD monitors have higher bit
rates [5]. A system is designed for generating four Pulse
Width Modulated (PWM) signals by using a FreeScale
MC9S12DG128B microcontroller. The frequency range of
the signals is specified as 7 Hz to 17 Hz and the duty cycle
is determined as 50%. Each signal is connected to one group
of LEDs via a circuit that includes transistors to amplify
the limited current of the microcontroller output. In order to
determine the frequency of each group of LEDs, seven DIP
switches on the board are used. After raising an interrupt
by pressing an external button, the specified frequency is
set to the selected LED group. In addition to this, a one
line character LCD is used to display the current frequency
values of each channel. A setup is designed for the subject
to easily choose a group of LEDs that represent a specific
direction command for the Nao; it can be seen in Fig.4.

Fig. 4. The Experiment Setup For Generating Four Stimuli that Represent
Directions

B. EEG Recording and Stimuli

The observer is prepared for the task by fixating at the
center point and directing attention to one group of LEDs
that generate a fixed frequency signal. The four different
stimuli, namely left, right, down and up have frequencies 7
Hz, 9 Hz, 11 Hz and 15 Hz respectively. Odd frequencies
are chosen to eliminate overlap of signals at their first and
second harmonics. Initial experiments were carried out in
the AILab of the Department of Computer Engineering at
Bogazici University which is an unshielded public place
where ambient light and noise are abundant. The results
showed that the light and noise in the environment have
negative influence. Then, we tried to minimize light and did
the tests in a darker environment that can be seen in Fig.5.
Since the power of LEDs are low, the subject is requested to
focus on the selected LEDs closely. Two sets of experiments
were done with 5-6 cm and 20-25 cm distance between
the subject and the LEDs. In the experiments, data were
recorded for five consecutive seconds, which showed clear
improvement over our preliminary experiments where data
were recorded for five separate seconds.

IV. DATA ANALYSIS

The raw data are taken from the Emotiv EPOC using
MATLAB. For each trial, 5 seconds of EEG data were
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Fig. 5. LEDs with Different Flicker Frequencies that Represents 4
Directions (At Dark Room)
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Fig. 6. 11 Gaussian Coefficients

analyzed. There are only two channels at the back of the
scalp that collect data from the occipital lobe which is
responsible for vision in the brain. Since SSVEP is expected
to appear at the vision center, we apply Discrete Fourier
Transform to the data obtained only from these two channels
which are occipital left and occipital right (O1 and O2). A
simple peak detection algorithm was applied, but a peak
at frequency f was observed to appear in the range of
f − 1 to f + 1 which may ultimately result in detecting the
wrong stimulus frequency. For instance, while the subject is
focusing at a stimulus of 7 Hz, the amplitude peak can be
seen in between 6 Hz and 8 Hz instead of exactly at 7 Hz.
Possible reasons include personal differences, positioning
of the EEG device, low sampling rate of the device and
the noise in the data. Consequently, a Gaussian model is
proposed as a solution to provide robustness against this
problem. In this model, 11 coefficients generated by Eq.(1)
with σ = 1 and j = −5,−4, .., 4, 5 are used; they can be
seen in Fig.6.

wj =
1√
2πσ

exp(− j2

2σ2
) (1)

The coefficients are multiplied with the neighbor frequen-
cies around a frequency f which are f − 1.0, f − 0.8,
f − 0.6, ... f + 0.6, f + 0.8, f + 1.0 (this method may be
interpreted as Gaussian band pass filtering). Summing these
11 values provides a total weight for each LED frequency.
In order to eliminate the alpha band effect on the data,
harmonics of the LED frequencies are also used: The first and
second harmonics and respective neighbor frequencies were
multiplied by the aforementioned Gaussian model and added
to the weight of corresponding frequency. The direction with
the highest corresponding frequency weight is then sent to
the robot as its next command. The algorithmic flow of
recording and analyzing the data can be seen in Fig.7.

Fig. 7. Collection and Analysis of The Data

V. EXPERIMENTAL RESULTS

SSVEP power strongly depends on both the flicker fre-
quency and the position of the stimuli as found in previous
studies [13]. As seen in Fig.8, Fig.9, Fig.10 and Fig.11, there
are no clear peaks at the expected frequencies. Instead, they
appear at the neighboring frequencies. Furthermore, in Fig.8
comparing only the main frequencies gives an erroneous
result of 15 Hz. Using our model, 7 Hz is determined
as the correct frequency. The weights seen in Fig.8 show
that classification based on the combined harmonics lead
to a significant improvement on the accuracy; this is also
mentioned in previous works [9]. The data with results seen
in Table I are taken when the subject is at a 5-6 cm distance
to the stimuli and directly focusing on them in the unshielded
department laboratory. Adding the neighboring frequencies
multiplied with Gaussian coefficients is seen to improve the
performance of the system greatly compared to simple peak
detection.

TABLE I
GAUSSIAN MODEL EFFECT ON ESTIMATION CORRECTNESS (12

SAMPLES AT EACH CELL)

7 Hz 9 Hz 11 Hz 15 Hz Average
FFT 75% 50% 33% 33% 48%

FFT + Gaussian 100% 50% 83% 50% 71%

Two sets of experiments were then carried out with three
volunteer subjects with their consents. In the first experiment,
the subjects were set approximately at 5 cm from the LEDs.
Experimental results seen in Table II display satisfactory
performance where the correct target is detected 81.7% of
the time on the average. The second set was taken where
subjects were approximately at a 22 cm distance. The rate
of correct estimation decreased for each subject as seen in
Table III.
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Fig. 8. FFT of Occipital Channels’ Data and Frequency Weights for 7Hz
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Fig. 9. FFT of Occipital Channels’ Data and Frequency Weights for 9Hz
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Fig. 10. FFT of Occipital Channels’ Data and Frequency Weights for 11Hz
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Fig. 11. FFT of Occipital Channels’ Data and Frequency Weights for 15Hz

TABLE II
ESTIMATION CORRECTNESS AT 5 CM (5 SAMPLES AT EACH CELL)

XXXXXXXXSubject
fLED 7 Hz 9 Hz 11 Hz 15 Hz Average

Subject 1 80% 100% 100% 80% 90%
Subject 2 100% 40% 100% 40% 70%
Subject 3 100% 80% 80% 80% 85%
Average 93.3% 73.3% 93.3% 66.7% 81.7%

VI. CONCLUSIONS

In this study we propose a BCI with an inexpensive and
easy to use EEG to control the arm of a humanoid robot
without training. Our aim is to develop eventually a platform
to help disabled people to communicate with home assistant
robots or other machines. The set up may be converted to
an interface to choose a task for a robot such as bringing
an object or turning on a device. The proposed BCI system
works properly with an average success rate of 75% for all
subjects with different distances from the stimuli. As future
work we will use zero padding in order to increase the
resolution of the FFT and decrease 5 seconds data receiving
period. A more detailed analysis will be done by applying
a window prior to FFT. Different stimulus frequencies will
also be tested.

TABLE III
ESTIMATION CORRECTNESS AT 22 CM (5 SAMPLES AT EACH CELL)

XXXXXXXXSubject
fLED 7 Hz 9 Hz 11 Hz 15 Hz Average

Subject 1 80% 80% 100% 20% 70%
Subject 2 40% 80% 100% 40% 65%
Subject 3 100% 60% 20% 100% 70%
Average 73.3% 73.3% 73.3% 53.3% 68.3%
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