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Abstract— Bio-robots based on brain computer interface
(BCI) suffer from the lack of considering the characteristic
of the animals in navigation. This paper proposed a new
method for bio-robots’ automatic navigation combining the
reward generating algorithm base on Reinforcement Learning
(RL) with the learning intelligence of animals together. Given
the graded electrical reward, the animal e.g. the rat, intends
to seek the maximum reward while exploring an unknown
environment. Since the rat has excellent spatial recognition, the
rat-robot and the RL algorithm can convergent to an optimal
route by co-learning. This work has significant inspiration for
the practical development of bio-robots’ navigation with hybrid
intelligence.

I. INTRODUCTION

Bio-robot is a biological-artificial hybrid system which
the animals controlled by outer devices such as electric
stimulation through Brain Computer Interface (BCI) [1].
Through mild simulation on specific regions of animals’
brain, the controlling commands manipulate the animals
behaviors directly [2]. BCI-based robots have been realized
on different kinds of animals, for example, rats, sharks and
insects [3], [4], [5], [6]. Guided by human operators, the ani-
mals can accomplish some complex tasks like walking along
complicated 3-D routes. It provides a promising perspective
such as searching and rescuing in disaster areas and even at
battle fields. Therefore bio-robots have attracted more and
more attention from researchers in neurobiology, biomedical
engineering, computer science, etc.

Since the first BCI-based rat-robot navigation system was
developed by S.K. Tawlar in 2002 [4], four behavioral control
commands are proposed: Forward, turning Left and Right
and even Stop [7] through delivering appropriate electrical
stimulus at the rat brain. However, current researchers mainly
treat bio-robots as traditional robots. They usually apply the
control methods of mechanic robot directly on the bio-robots,
ignoring animals’ intelligence totally. These approaches per-
form the automatic navigation on bio-robots far less ideal,
which limits practical potential heavily.
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The animals learning ability to exploring the un-configured
environment can be considered as a reinforcement learning
process [8]. Reinforcement Learning (RL) [9] is a skill-
learning process for an agent, either a mechanical device
or an animal, which must change its behavior to achieve
some goal optimally through interactions with dynamic en-
vironment and by awarded various forms of rewards. In
recent decades, bio-inspired RL has been widely used in
the mobile robot navigation for example path planning and
obstacle avoidance in dynamic environment [10], [11], [12],
[13]. However, most of these methods mainly concentrates
on the algorithms about obstacle avoidance and prone to meet
the challenge of local minima problem. Animals’ excellent
locomotive ability and intelligence in spatial recognition will
be a perfect enhancement for reinforcement learning.

In RL navigation methods, the controlling policy deter-
mines the behavioral sequence of the robot agent. Neverthe-
less no policy could solve various environments in any cases
subject to the complexity of the surroundings. Meanwhile
some animals, e.g. rodents can adapt different cases given
by proper motivation. To attain the desired reward, such as
food or water, rats adopt trial-and-error strategy and find
optimal route after exploration in an unknown environment.
This spatial recognition ability of animals combined with
the appropriate reward in RL would provide a hybrid intel-
ligence system with the biological and artificial intelligence
to implement the bio-robot automatic navigation.

In this paper, a classical reinforcement learning method,
Q-learning, is introduced into the bio-robots navigation prob-
lem. The rat-robot and the rewarding algorithm working
together to build up a Q-learning reinforcement procedure
to meet the requirements in the unknown space. According
to Q-values generated in the RL algorithm, the incremental
sequence of electrical reward is given to assist the rat-robot to
perceive the environment and learn the target. When the rat-
robot approaches closer to the destination, it receives higher
electrical stimulation corresponding to the higher Q-values,
otherwise the lower stimulus. In this way, the rat-robot
builds a cognitive map about the environment and learned an
optimal route autonomously. It provides a practical method
for rat-robot navigation in un-configured environment, effect
of which is proven by the experiment.

The remainder of this paper is organized as follows.
The details of our controlling algorithm in the rat-robot
navigation will be described in Session II and the results
will be introduced and discussed in session III. Finally, the
conclusion and our future plan will be presented in session
IV.
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II. METHODS AND MATERIALS

A. Subjects and Reward

The navigation experiments are performed with adult
Sprague Dawley rats (230-340g). One pair of bipolar elec-
trodes is implanted in left and right medial fore-brain bundle
(MFB) area (AP -3.8, ML+1.6, DV+8.2). The electrical stim-
ulation in MFB generates intensive excitement for rats as a
Reward command. After a 7-days recovery, the rat is placed
in an operant chamber undergoing the bar-pressing training
[7]. Through this traing, the rat’s reward-seeking behavior
and the effect of the electric stimulation is reinforced. Note
that in rat-robot, only one side of MFB stimulation is chosen
as the commands of Reward according to performance in the
operant-chamber-tests. The difference of the side of MFB
stimulation will influence the habit of rat-robot in walking.
The rat-robot is shown in Fig.1.

Fig. 1. The rat-robot.

B. Reward grading

Whether the rat could distinguish and react to different
intensity of electrical stimulation is essential to the effect of
RL methods. We grade the reward stimulation to different
levels measured by rat-robots responding behaviors.

According to our experience of former navigation exper-
iments [3], [14], [7] the parameters for MFB is given as
following: pulse interval: 10ms, pulse duration: 1ms, pulse
number: 10-15, pulse amplitude: 1-10V. First, the pulse
amplitude starting at 1V is given to the rat and increasing
in steps of 0.5V with pulse number 10, until the rat-robot
can perform navigation behaviors and complete the task.
Thus we get the initial stimulus parameters (labeled as n
and a in TABLE I) as Level 1 which represents the lowest
stimulation to guarantee the normal advance of the rat-robot.
From Level 1 to Level 10 the reward variation in pulse
number and amplitude is shown in TABLE I. Next the rat-
robot proceeds to maze training, which consists of three
trials. The distance of each trail is 420cm and the time to
complete each trial is recorded. The movement speed under
different stimulation levels is calculated to measure the effect
of the graded reward.

TABLE I
REWARD GRADING TABLE

Level Num Amplitude
1 n a
2 n a + 0.25
3 n a + 0.50
4 n a + 0.75
5 n + 1 a + 1.00
6 n + 1 a + 1.25
7 n + 1 a + 1.50
8 n + 1 a + 1.75
9 n + 2 a + 2.00

10 n + 2 a + 2.25

C. Q-learning

In a standard model of Reinforcement Learning, an agent
performs an action at state st with an immediate reward
rt. Through this process, an action sequence is generated
that enables the rat-robot to select the optimal action at
any given state autonomously. In this paper, we choose Q-
learning algorithm as it has been successfully utilized for
solving complex RL in realistic systems with a simple rule.
In Q-leaning, the Q-value Q(s, a) is defined as a numerical
value that evaluates the future influence on the total task
when taking action a at current state s. The purpose of Q-
leaning is to employ a policy π that helps the agent to select
an action a that makes the Q-value maximum at a given state
s. The Q-value is renewed as follows [15] :

Q(s, a) = r(s, a) + γmaxQ(δ(s, a), a′) (1)

Where r denotes the immediate reward; δ is the state transfer
function and δ(s, a) denotes the expected next state of agent
after employ action a at current state s; γ is the discount rate
(0 ≤ γ < 1) denotes the relative ratio between the immediate
reward at the current state s and the delayed reward at future
state δ(s, a).

D. Application of Q-learning in rat-robot

The Q-learning algorithm can be used to provide the
graded reward so that the rat-robot can learn the optimal
route autonomously. There are three key points to realize
this application: States, Actions and Rewards.

• States: The state in our model is represented directly by
the location of the rat-robot in the maze. To simplify the
controlling algorithm, these locations are divided into
several sub-areas as the final states. Two special state,
start and goal are assigned as the start and destination of
navigation. During the experiments, a bird-eye camera
and machine vision algorithms are employed to identify
the instantaneous state.

• Actions: While in the navigation of mobile robots, the
action is chosen by the controlling policy, the action
is determined by the rat-robot in our experiments. The
rat would choose its actions by itself according to the
different reward.
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• Rewards: We associated the graded stimulus intensity
with different Q-values so that the rat-robot can receive
graded rewards based on the Q value table. The distribu-
tion of the state and reward in the environment also fits
the nature of spatial recognition as the cognitive map in
the rat-robots’ brain.

The whole navigation model is shown as Fig. 2. At
beginning, all the items of the Q-value table is initialized
to 0. Let the rat-robot walk with Level 1 reward and we
record its action at every state. Once the rat reaches the goal,
the Q-value of every recorded state and action is updated
reversely. At the same time, the reward map is also renewed
base on the Q-value table so that the rat-robot will receive
graded stimulation in later trials. In the process of navigation,
the Q-value table converges gradually with each complete
trial. At the same time the rat learns the graded rewards
under different actions and gradually tends to chose better
route with higher level reward. Eventually, the Q-value table
remains constant and the rat-robot always walks along the
optimal route. Then we can conclude that the convergence
of the RL algorithm and the rat-robots learning process of
the optimal route are completed.
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Fig. 2. Navigation model

III. EXPERIMENT AND RESULTS

A. Reward grading in T-maze

Rat-robot F05, V03 and V07 were tested in T-maze.
The pulse parameters of the Level 1 are listed in Table
II. The stimulus parameters of Level 2 to Level 10 can be
calculated by Table I. Average speed of three rat-robots under
different stimulation level was computed and is shown in
Fig.3. The reverse-U curves illustrate the rise of the speed
before Level 6. The higher intensity of the electrical reward
is given, the more quickly the rat-robot response. However,
after a peak at Level 6, further stimulation would cause the
abnormal behaviors, such as twitching or turning around.
This phenomenon also explains the descend of the speed
after Level 6. Therefore in our RL navigation, the parameters
from Level 1-6 are chosen in later experiments.

TABLE II
PULSE PARAMETER OF LEVEL 1

Rat No Number Amplitude(V) Interval(ms) Duration(ms)
F05 13 3.35 10 1
V03 10 4.00 10 1
V07 10 3.20 10 1
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Fig. 3. Average speed in response to graded stimulus delivered to the MFB
of rat-robot F05, V03 and V07.

B. Automatic navigation with Q-learning algorithm

The automatic navigation with graded rewards base on Q-
leaning algorithm was performed in a T-maze. As shown in
Fig. 4(a), we divided the T-maze into eleven states (from A
to K). The rat-robot is placed at the state A and allocates
state E or state K as a goal state.

As mentioned before, MFB stimulation is given in one-
side of the brain, so the electrical stimulation influences the
locomotive behaviors of the rat-robot [7]. Normally the rat-
robot prefers to walk forward the contralateral direction of
the stimulation. As in Fig. 4(a), we chose state K as goal
state for Rat V07 which receives the Reward stimulation in
the Left side MFB. Initially, the rat-robot preferred to turn
right. Once the rat-robot reaches the goal, the Q-vale table
is updated referring to the RL algorithm. In experiments, the
Q-values are divided into three ranks corresponding to three
kinds of rewards as Level 2, Level 4 and Level 6, which
also denoted by the Green, Yellow and Blue rectangles in
Fig. 4(c). All routes of six trials are shown in Fig. 4(c), with
red points represent the rat-robots position at the time of
receiving stimulus reward. In Trial 1, the Q-table is initialized
as 0, thereby the rat-robot receives the lowest reward (Level
2) to keep walking forward freely. In later trials (Trial 2
to Trial 6), the rat-robot receives graded stimulus reward as
the Q-value table updated when the rat reached the goal at
the end of Trial 1. The completion time and the command
number of Level 2 in Trial 1, 2, 3 descend obviously, as
shown in Fig. 4(d), which certifies that the rat-robot is
learning and getting familiar with the environment. In Trial 4
and Trial 5, when the rat-robot chooses the wrong direction,
it perceives the lower stimulation (from Level 4 to Level
2) and then turns back to the former state for a higher
reward. Eventually, the rat-robot walked along the optimal
route in Trial 6. In the whole learning process, Fig. 4(b)
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demonstrates the convergent Q-value table. Meanwhile Fig.
4(d) shows that the completion time and commands number
of each Trial descend and tend to stay stable. After 6 trials,
the RL navigation algorithm and the learning process are
both converged.

(a) (b)

(c)

(d)

Fig. 4. Automatic navigation in T-maze of Rat-robot V07. (a) A T-maze
with eleven states: for V07, State A is the start state and State K is the
goal State. (b) Results of Q-learning: Q-value of every state and feasible
action is generated. (c) Actual automatic navigation route: with Q-learning
process of V07 in successive six trials. Red points represent the rat position
at the time of stimulation. Among this, the reward that the rat-robot receives
at red points in Green Rectangle is Level 2. Similarly, Yellow Rectangle
corresponds to Level 4 and Blue Rectangle corresponds to Level 6. (d)
Command Numbers and Completion Time: command numbers of each level
and completion time in six trials.

IV. CONCLUSION AND FUTURE WORK

A RL based control model for rat-robot automatic navi-
gation is presented in this paper. Through maintaining a Q-

value table, the best action for every state can be confirmed.
Also, graded stimulation intensity is generated corresponding
to the different Q-value. The results show that the rat-robot
can perceive stimulation of different levels and learn the
optimal route to the destination.

Our work focuses on applying RL in rat-robot automatic
navigation. Based on current study, some work should be
done in the future. More complicated environment should be
tested. The convergence of both the RL algorithm and the
learning curve of the rat depend on their learning abilities
and the complexity of the environment. This process should
be modeled in the future studies.
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